软件工程实践——软件评测作业

这个作业属于哪个课程2302软件工程
这个作业要求在哪里软件工程实践——软件评测作业
这个作业的目标对比测试给定的网站
其他参考文献构建之法

第一部分 调研、评测

1.kimi

1.1 使用体验

  1. 介绍和使用

    • 介绍
      Kimi是2023年10月推出的一款智能助手,主要应用场景为专业学术论文的翻译和理解、辅助分析法律问题、快速理解AAPI开发文档等,是全球首个支持输入20万汉字的智能助手产品。

    • 初始界面
      页面非常整洁
      kimi

    • 分析论文
      kimi

    • 历史会话
      历史

  2. 优缺点分析

    • 优点
      1. 可以给链接
      2. 可以上传文件
      3. 页面简洁,用户体验好
    • 缺点
      1. 模块比较单一
  3. 改进意见

    • 增加模块,比如一些个性化功能
  4. 用户采访

    • 对象背景:社会职员
    • 选择原因:更好地参考企业人员的意见
    • 它的需求:能够满足他在工作中遇到的一些不熟悉的专业领域的问题
    • 问题:无
    • 亮点:界面非常简洁
    • 建议:增加个性化功能以及推广

1.2 bug描述

bug严重程度程度说明
五星级致命错误,对系统功能有严重程度的影响,严重影响安全,极其影响用户使用
四星级严重错误,对系统功能有很大程度的影响,影响安全性,非常影响用户使用
三星级一般错误,对系统功能有一般程度的影响,不影响安全性,比较影响用户使用
二星级界面问题,对系统功能有较小的影响,不影响安全性,稍微影响用户使用
一星级建议型问题,对系统功能几乎没有什么影响,不影响安全性,也不影响用户使用
  1. bug发生时的测试环境

    • Win11+Edge
  2. 可复现性及具体复现步骤

    • 可复现性:经常发生
    • 步骤:
      1. 删除历史记录时,当前的页面仍然会保留。
  3. bug具体情况

    • 删除所有历史记录后,当前的界面仍然是原先的对话界面,必须输入新的问题,页面才会刷新。
      这里有三个历史会话,进行删除。在这里插入图片描述
      这是删完之后在这里插入图片描述
      在退出来,界面仍然停留在上一个聊天中,并没有刷新。
      在这里插入图片描述
  4. 原因分析

    • 可能原因:历史信息功能的不完善
    • 严重性:二星级
    • 改进意见:检查源码中的相关模块,debug。

1.3 结论

好,不错 之前用的语言模型基本上不允许附带链接,这个比较新颖。

类别描述分数(10分)
核心功能分析三个核心功能,功能设计和质量。9
细节有什么为用户考虑的细节?7
用户体验当用户完成功能时,不干扰用户 (例如: 是否不断弹出不相关广告)。9
辅助功能一些辅助功能如皮肤等5
差异化功能这个软件独特的功能. 它对用户的吸引力有多大?7
软件的效能占用内存, 启动速度, 内存泄漏情况9
软件的适应性在联网/断网, 大小屏幕, 没有鼠标的情况下都可以顺畅操作. 和不同平台的软件能流畅协作8
成长性记住用户的选择, 适应用户的特点,用户越用越方便9
用户有控制权系统状态有反馈,等待时间要合适。关键操作有确认提示,有明确的错误信息。 让用户方便地从错误中恢复工作, 快捷操作键可调整。7
总分总分9070

2.文言一心

2.1 使用体验

  1. 介绍和使用

    • 介绍
      文心一言是百度研发的 人工智能大语言模型产品,能够通过上一句话,预测生成下一段话。 任何人都可以通过输入【指令】和文心一言进行对话互动、提出问题或要求,让文心一言高效地帮助人们获取信息、知识和灵感。
    • 初始界面
      在这个界面左边是导航栏,内容包括:新建对话,使用指南等等。右边大面积的窗口,用于交互,并且在空的聊天中,有快捷提问的方式,让新用户有更好的体验。
      初始界面
    • AI绘图
      AI绘图
    • 写代码
      代码
  2. 优缺点分析

    • 优点
      1. 可以根据上下文预测生成下一段话,使得对话过程更加流畅、自然,提高了用户的交互体验。
      2. 可以通过与文心一言对话,获取各种信息、知识和灵感,无论是学习、娱乐还是解决问题,都能够得到相应的帮助。
      3. 任何人都可以通过简单的指令与文心一言进行对话互动,无需复杂的操作,使得使用起来非常便捷。
    • 缺点
      1. 由于语言模型的局限性,可能无法完全理解复杂的语境,导致生成的回应不够准确或合适。
      2. 文心一言的回答受限于其所训练的数据集,可能无法覆盖所有领域的知识,特定领域的问题可能无法得到满意的回答。
  3. 改进意见

    • 增强专业领域方面的知识
    • 加强用户支持和社区建设
    • 提升语境理解能力
  4. 用户采访

    • 对象背景:华中科技大学21级学生
    • 选择原因:参考校内人员的意见
    • 它的需求:帮助他解决学习上的问题
    • 问题:无
    • 亮点:回答的问题很全面
    • 建议:在专业领域上的问题,可以加强

2.2 bug描述

bug严重程度程度说明
五星级致命错误,对系统功能有严重程度的影响,严重影响安全,极其影响用户使用
四星级严重错误,对系统功能有很大程度的影响,影响安全性,非常影响用户使用
三星级一般错误,对系统功能有一般程度的影响,不影响安全性,比较影响用户使用
二星级界面问题,对系统功能有较小的影响,不影响安全性,稍微影响用户使用
一星级建议型问题,对系统功能几乎没有什么影响,不影响安全性,也不影响用户使用
  1. bug发生时的测试环境
    • Win11+Google
  2. 可复现性及具体复现步骤
    • 可复现性:经常发生
    • 步骤:
      1. 问一个涉及专业邻域比较深的问题,比如几何
      2. 让它论证观点
      3. 不管观点是对是错,它都能自圆其说
  3. bug具体情况
    • 问了一个几何上的错误问题,它给我错误的结论。在这里插入图片描述
  4. 原因分析
    • 可能原因:该语言模型并没有设计较深的专业领域知识
    • 严重性:三星级
    • 改进意见:增加相关领域的数据以及开发学习能力,让模型变得原来越专业,对于已知的结论,可以给予用户解答,未知领域的问题,可给出用户相应提示(比如:该模型未涉及该领域,给出的回答仅供参考等等),而不是捏造结论。

2.3 结论

好,不错 在国内是一个不错的软件,体验感总的来说是不错的

类别描述分数(10分)
核心功能分析三个核心功能,功能设计和质量。8
细节有什么为用户考虑的细节?8
用户体验当用户完成功能时,不干扰用户 (例如: 是否不断弹出不相关广告)。9
辅助功能一些辅助功能如皮肤等7
差异化功能这个软件独特的功能. 它对用户的吸引力有多大?7
软件的效能占用内存, 启动速度, 内存泄漏情况8
软件的适应性在联网/断网, 大小屏幕, 没有鼠标的情况下都可以顺畅操作. 和不同平台的软件能流畅协作8
成长性记住用户的选择, 适应用户的特点,用户越用越方便9
用户有控制权系统状态有反馈,等待时间要合适。关键操作有确认提示,有明确的错误信息。 让用户方便地从错误中恢复工作, 快捷操作键可调整。7
总分总分9071

第二部分 分析

1.开发时间估计

  • 六个月
  • 第1个月:需求分析和规划
    • 前期调研:收集用户需求和功能要求,进行市场调研。
    • 确定功能和特性:根据调研结果确定网站的功能和特性。
    • 制定项目计划:确定开发计划、里程碑和任务分配。
  • 第2-3个月:技术选型和架构设计
    • 技术选型:选择合适的技术栈,包括后端语言、数据库、前端框架等。
    • 架构设计:设计系统架构,确定数据流、处理流程和系统组件。
  • 第4-5个月:开发和测试
    • 后端开发:开发后端系统,包括用户管理、对话处理、情感分析等功能。
    • 前端开发:开发前端界面,包括对话界面和其他功能页面。
    • 测试和调试:进行系统测试,修复漏洞和问题,确保系统稳定运行和良好性能。
  • 第6个月:部署和上线
    • 系统部署:将系统部署到服务器上,配置环境和服务器资源。
    • 上线发布:进行上线前的最后测试,确保系统可以正常运行。
    • 监控和维护:上线发布后,监控系统运行状态,及时发现和解决问题。

2.优劣分析

  • Kimi与文心一言是当前国内智能对话系统中备受瞩目的产品。Kimi以其出色的语言处理和超长文本处理能力脱颖而出,在同类产品中领先。其简洁直观的界面设计、快速响应和良好的用户体验进一步增强了其竞争优势。Kimi能够处理多种文件格式和访问互联网,为用户提供安全、有帮助和准确的回答,这在国内市场中备受欢迎。

  • 相比之下,文心一言在语义理解和生成方面表现出色。基于深度学习技术,它能够准确捕捉用户意图,提供流畅、精准的回答和对话体验。文心一言还具备丰富的知识库和学习能力,不断吸收新知识,持续提升自身性能。尽管对于复杂或模糊的问题可能需要进一步澄清或补充,但在国内智能对话系统中,文心一言排名靠前,备受认可。

3.优化建议

  • kimi:
    • 可以增加一些个性化功能
    • 对于历史会话和刷新页面的功能需要完善
  • 文心一言:
    • 对于专业领域的知识可以再提高

4.bug原因

  • kimi:
    • 开发人员可能并没有考察到这个小细节,导致出现了现在的bug
  • 文心一言:
    • 在专业领域的知识并不完善,同时也没有做好提示用户的功能

5.潜在问题

  • kimi:
    • 问题:团队的测试用例可能并不全面。
    • 改进:在测试用例上增加,达到更全面,减少低级bug的出现
  • 文心一言:
    • 问题:团队在特定领域上可能也并不了解
    • 改进:需要请教专家团队,来增强这方面的测试

第三部分 建议和规划

1 市场概况

1.1 市场规模

  • 截至2023年,全球大型语言模型市场的估值为66.6亿美元。预计到2030年,这一市场将以29.71%的复合年增长率(CAGR)增长,达到411.7亿美元。此外,有预测显示,到2030年,AIGC(人工智能生成内容)的市场规模或将超过万亿人民币。而在中国,据2023年的数据显示,已有超过19个语言大模型研发厂商,预计当年中国语言大模型市场规模将达到132.3亿元人民币,增长率有望超过100%。这些数据表明,无论是在全球范围内还是在中国,大型语言模型市场都呈现出强劲的增长势头和巨大的发展潜力

1.2 直接用户

  • 企业和商业组织:大型语言模型在客户服务、内容创作、数据分析、市场预测等方面发挥着重要作用。企业通过集成语言模型API,可以提升产品和服务的智能化水平,改善用户体验。

  • 科研机构和学术界:研究人员利用语言模型进行自然语言处理、机器学习、语义分析等领域的研究,推动科学发现和技术创新。

  • 开发者和技术公司:软件开发者和科技公司使用语言模型开发新的应用程序和服务,如智能助手、聊天机器人、语音识别系统等。

1.3 潜在用户

  • 个人用户:随着智能设备和互联网服务的普及,个人用户越来越多地接触和使用到集成了语言模型的服务,如智能音箱、在线翻译工具、个性化推荐系统等。

  • 教育领域:教育机构和教师可以利用语言模型进行教学辅助、语言学习、作文批改等,提高教育质量和效率。

  • 医疗健康:在医疗领域,语言模型可以辅助医生进行病例分析、医学文献检索、患者沟通等工作。

  • 法律和金融行业:法律专业人士和金融机构可以利用语言模型进行文档审查、合同分析、风险评估等任务。

  • 政府和公共服务:政府部门可以应用语言模型提升公共服务水平,如自动化处理公众咨询、提供政策解读、优化行政管理流程等。

2 市场现状

2.1 市场产品

  • ChatGPT
  • Google Assistant
  • Siri
  • Bing
  • Google Search
  • 等等

2.2 产品定位、优劣势

  • ChatGPT:

    • 定位:ChatGPT是一个基于大型语言模型的对话AI,能够生成文本、回答问题、创作内容并进行交互。
    • 优点:强大的文本生成能力,能够进行流畅的对话,适用于多种场景如客服、教育、创作等。能够理解和生成自然语言文本,包括新闻报道、故事情节等。
    • 劣点:可能存在理解上的偏差,生成的文本可能需要人工校验和修正。处理大量数据或复杂问题时,需要较长时间生成回答。
  • Google Assistant:

    • 定位:Google Assistant是一个虚拟助手,集成在多种Google产品中,提供语音交互、智能家居控制、信息检索等功能。
    • 优点:广泛的设备兼容性,与Android设备紧密集成。提供实用的智能家居控制功能,如便签、快速拨号、预约执行等。在智能交互和多任务处理方面表现出色。
    • 劣点:虽然在隐私保护方面有所加强,但仍可能引发用户对隐私泄露的担忧。与其他非Google生态系统的设备和服务的兼容性可能有限。
  • Siri:

    • 定位:Siri是苹果公司的虚拟助手,提供语音控制、信息检索、日常任务管理等功能。
    • 优点:与苹果生态系统深度集成,为用户提供无缝的跨设备体验。在iOS、iPadOS、macOS等操作系统中表现良好。
    • 劣点:相对于其他竞争对手,Siri的功能和应用场景可能较为有限,主要服务于苹果设备用户。
  • Bing:

    • 定位:Bing是微软公司开发的搜索引擎,提供网页搜索、新闻、图片、视频等内容的检索服务。
    • 优点:提供高质量的搜索结果,集成了微软的AI技术,如实时翻译和图像识别功能。
    • 劣点:市场份额相对于Google Search较小,可能在某些地区的搜索结果相关性和覆盖度上存在不足。
  • Google Search:

    • 定位:Google Search是全球使用最广泛的搜索引擎,提供全面的网页、新闻、图片、视频等搜索服务。
    • 优点:强大的搜索算法,提供高度相关和准确的搜索结果。不断通过AI技术优化用户体验,如Google Assistant的集成。
    • 劣点:由于其广泛的数据收集,可能引发用户对隐私保护的担忧。在某些国家和地区可能面临反垄断审查和限制。

2.3 产品关系

  • Google Search和Bing处于竞品关系
  • ChatGPT与Google Assistant处于竞品关系

2.4 领域所处阶段

  • 目前处于成长的阶段,并且正在逐步接近风口

3 市场与产品生态

3.1 核心用户群

  • 核心用户群
    • 技术爱好者和早期采用者:这类用户通常对新兴技术充满热情,愿意尝试并探索AI语言模型的潜力。他们可能是IT专业人士、程序员、科技博客作者等,年龄可能偏向年轻,学历较高,拥有较强的技术背景和好奇心。

    • 企业用户:企业可能利用这类产品来提升工作效率,如客服自动化、数据分析、内容创作等。这些用户可能是企业决策者、产品经理、市场营销人员等,他们关注产品如何帮助企业节省成本、提高效率和创造新的商业价值。

    • 教育和学术研究者:教育工作者和学生可能利用语言模型进行教学辅助、语言学习、研究分析等。这类用户可能对语言学、人工智能、教育技术等领域有深入的兴趣和知识。

    • 创意产业从业者:如作家、编辑、内容创作者等,他们可能利用语言模型来辅助创作、提高产出效率或激发创意。

  • 特征:
    • 学历:本科及以上,对技术有一定了解。
    • 年龄:20-45岁,这个年龄段的用户通常对新技术接受度高,且有较强的消费能力和购买决策权。
    • 专业:计算机科学、语言学、市场营销、教育等。
    • 爱好:对科技、编程、内容创作、学习新知识等有浓厚兴趣。
    • 收入:中等偏上,能够承担产品的使用成本。
    • 表面需求:提高工作效率、学习新知识、获取信息、娱乐和社交。
    • 潜在需求:追求创新、提升个人或企业的竞争力、满足好奇心和探索欲。

3.2 用户群体关系与生态构建

  • 产品的用户群体之间存在一定的关系,例如技术爱好者可能会分享他们的使用经验,影响企业用户的决策;教育工作者可能会推荐产品给学生使用。通过构建一个平台,让用户分享经验、交流技巧、协作解决问题,可以形成活跃的用户社区,从而二次构成特定的用户生态。

3.3 产品子产品与其他产品关系

  • 产品的子产品和其他相关产品之间也存在一定的关系。例如,可以将语言模型与教育软件、企业办公工具、内容创作平台等进行整合,形成一个产品生态系统。通过这种方式,不同产品之间的特性可以相互补充,为用户提供更全面、更便捷的服务。例如,语言模型可以作为智能助手集成到企业通讯工具中,或者作为学习辅助工具嵌入在线教育平台。通过这种方式,可以增强用户的粘性,提升产品的市场竞争力,同时也为用户提供更加丰富和便捷的使用体验。

4 产品规划

4.1 新功能分析

  • 新功能:个性化智能推荐系统
  • 这个系统将利用先进的机器学习算法,根据用户的历史交互、偏好和行为模式,提供个性化的内容推荐、任务自动化和学习资源。
  • 为何要做这个功能:
    • 市场需求:用户对于个性化服务的需求日益增长,他们希望软件能够更好地理解自己的需求和偏好。
    • 竞争优势:当前市场上的类似产品尚未完全实现深度个性化,这为我们提供了机会,通过提供更加精准的个性化服务来获得市场优势。
    • 用户粘性:通过个性化推荐,可以增加用户的使用频率和时长,提高用户粘性。
  • 用户为何会用你的产品/功能:
    • 提升效率:个性化推荐可以帮助用户快速找到他们感兴趣的信息,节省搜索和筛选的时间。
    • 增强体验:用户会因为软件的“懂我”而感到惊喜,从而提升整体的使用体验。
    • 持续学习:系统会根据用户的反馈不断优化推荐算法,使得推荐内容越来越贴合用户的实际需求。
  • 创新点:
    • 深度学习:利用深度学习技术对用户数据进行分析,提供更为精准的个性化服务。
    • 实时动态调整:系统能够实时响应用户的行为变化,动态调整推荐策略。
    • 多维度推荐:不仅基于用户的兴趣,还结合时间、地点、情绪等多维度因素进行推荐。
  • NABCD分析:
    • N(Need):市场和用户需要更加个性化和智能化的推荐服务。
    • A(Approach):通过深度学习和大数据分析,实现个性化推荐系统。
    • B(Benefit):用户可以获得更加精准和个性化的内容和服务,提升满意度和忠诚度。
    • C(Cost):开发和维护个性化推荐系统需要投入相应的研发资源和时间。
    • D(Differentiation):与竞品相比,我们的推荐系统更加精准和动态,能够提供更好的用户体验。

4.2 团队配置

  • 项目经理1名:负责整体项目规划、进度跟踪和资源协调。
  • 前端开发工程师1名:负责用户界面设计和前端功能实现。
  • 后端开发工程师2名:负责后端逻辑、数据库设计和API开发。
  • 测试人员2名:负责编写测试用例,进行功能测试和性能测试。

4.3 16周详细规划

  • Week 1-2:需求分析和项目规划。设计初步的产品原型,确定技术路线和数据需求。
  • Week 3-4:技术选型和环境搭建。开始搭建前端和后端框架,准备数据集和初步的算法模型。
  • Week 5-6:功能开发。开发用户界面,实现基础的后端逻辑。
  • Week 7-8:功能开发。继续开发和优化前端界面。
  • Week 9-10:系统集成和初步测试。进行系统集成,开始编写测试用例并进行初步测试。
  • Week 11-12:性能优化和功能调整。进行性能优化和功能调整,继续优化推荐模型。
  • Week 13-14:用户体验测试和迭代。进行用户体验测试,收集反馈并调整设计,协调团队进行必要的迭代。
  • Week 15-16:最终测试和发布准备。进行最终的测试,确保所有功能正常运行,准备发布计划和市场推广策略,团队进行最后的冲刺和修复。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值