- 博客(3)
- 收藏
- 关注
原创 基于Transformer实现机器翻译(日译中)
基于Transformer实现机器翻译是一个复杂的任务,需要一定的深度学习和自然语言处理知识。同时,由于Transformer模型的计算复杂度较高,需要较强的计算资源进行训练和推理。相比传统模型,Transformer的优势在于其并行处理能力和对长距离依赖关系的捕捉。这使得它在处理大规模数据集和复杂任务时表现出色。自从被提出以来,Transformer已经成为众多NLP任务的基础,如机器翻译、文本生成和问答系统等。
2024-06-26 13:58:16 755
原创 基于自然语言处理机器翻译
机器翻译,也称为自动翻译,指的是利用计算机程序将一种自然语言(源语言)翻译成另一种自然语言(目标语言)的过程。它是人工智能领域的一个重要分支,涉及到计算机科学、语言学和数学等多个学科。机器翻译的历史可以追溯到20世纪40年代,但直到20世纪50年代,随着计算机技术的发展,机器翻译才开始得到实际应用。早期的机器翻译系统主要基于规则,依赖于语言学家提供的语法规则和词典。然而,这种方法存在很多局限性,因为它很难处理语言的复杂性和多样性。直到21世纪初,随着大数据和深度学习技术的发展,机器翻译迎来了新的突破。
2024-06-24 15:45:19 937
原创 自然语言处理前馈网络
多层感知器(MLP)和卷积神经网络(CNN)都是深度学习模型,可以用于对姓氏进行分类任务,但它们在结构和处理数据的方式上存在一些差异。
2024-06-13 21:15:46 1037 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人