基于自然语言处理机器翻译

一 机器翻译


1 定义

机器翻译,也称为自动翻译,指的是利用计算机程序将一种自然语言(源语言)翻译成另一种自然语言(目标语言)的过程。它是人工智能领域的一个重要分支,涉及到计算机科学、语言学和数学等多个学科。

机器翻译的历史可以追溯到20世纪40年代,但直到20世纪50年代,随着计算机技术的发展,机器翻译才开始得到实际应用。早期的机器翻译系统主要基于规则,依赖于语言学家提供的语法规则和词典。然而,这种方法存在很多局限性,因为它很难处理语言的复杂性和多样性。

直到21世纪初,随着大数据和深度学习技术的发展,机器翻译迎来了新的突破。现代的机器翻译系统,特别是基于神经网络的翻译模型,能够通过学习大量的双语文本数据,自动发现语言之间的对应关系和翻译规则。

2 模型

  1. 数据准备:收集大量的双语文本对,进行预处理,如分词、去除停用词等。

  2. 模型训练:使用神经网络模型(如循环神经网络、长短时记忆网络、Transformer等)对双语文本进行训练,学习语言之间的映射关系。

  3. 解码:在翻译过程中,模型根据源语言文本生成目标语言文本。

  4. 后处理:对生成的翻译结果进行优化,如语法修正、流畅度提升等。

二  实验案例

1 读取和预处理数据

为使用PyTorch进行机器翻译或其他NLP任务的深度学习模型设置环境,包括导入必要的库、定义特殊标记、设置GPU使用、检查PyTorch版本和设备信息,以及可能导入自定义的辅助模块。

import collections
import os
import io
import math
import torch
from torch import nn
import torch.nn.functional as F
import torchtext.vocab as Vocab
import torch.utils.data as Data

import sys
# sys.path.append("..") 
import d2lzh_pytorch as d2l
# 定义三个特殊的标记:PAD用于填充序列,BOS用于序列的开始,EOS用于序列的结束。
PAD, BOS, EOS = '<pad>', '<bos>', '<eos>'
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# 设置环境变量CUDA_VISIBLE_DEVICES为"0",这通常用于指定CUDA应该使用的GPU设备。
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print(torch.__version__, device)

接着定义两个辅助函数对后面读取的数据进行预处理。

# 将一个序列中所有的词记录在all_tokens中以便之后构造词典,然后在该序列后面添加PAD直到序列
# 长度变为max_seq_len,然后将序列保存在all_seqs中
def process_one_seq(seq_tokens, all_tokens, all_seqs, max_seq_len):
    all_tokens.extend(seq_tokens)
    seq_tokens += [EOS] + [PAD] * (max_seq_len - len(seq_tokens) - 1)
    all_seqs.append(seq_tokens)

# 使用所有的词来构造词典。并将所有序列中的词变换为词索引后构造Tensor
def build_data(all_tokens, all_seqs):
    vocab = Vocab.Vocab(collections.Counter(all_tokens),
                        specials=[PAD, BOS, EOS])
    indices = [[vocab.stoi[w] for w in seq] for seq in all_seqs]
    return vocab, torch.tensor(indices)

使用一个很小的法语—英语数据集。在这个数据集里,每一行是一对法语句子和它对应的英语句子,中间使用'\t'隔开。在读取数据时,我们在句末附上“<eos>”符号,并可能通过添加“<pad>”符号使每个序列的长度均为max_seq_len。我们为法语词和英语词分别创建词典。法语词的索引和英语词的索引相互独立。将序列的最大长度设成7,然后查看读取到的第一个样本。该样本分别包含法语词索引序列和英语词索引序列。

def read_data(max_seq_len):
    # in和out分别是input和output的缩写
    in_tokens, out_tokens, in_seqs, out_seqs = [], [], [], []
    with io.open('fr-en-small.txt') as f:
        lines = f.readlines()
    for line in lines:
        in_seq, out_seq = line.rstrip().split('\t')
        in_seq_tokens, out_seq_tokens = in_seq.split(' '), out_seq.split(' ')
        if max(len(in_seq_tokens), len(out_seq_tokens)) > max_seq_len - 1:
            continue  # 如果加上EOS后长于max_seq_len,则忽略掉此样本
        process_one_seq(in_seq_tokens, in_tokens, in_seqs, max_seq_len)
        process_one_seq(out_seq_tokens, out_tokens, out_seqs, max_seq_len)
    in_vocab, in_data = build_data(in_tokens, in_seqs)
    out_vocab, out_data = build_data(out_tokens, out_seqs)
    return in_vocab, out_vocab, Data.TensorDataset(in_data, out_data)
max_seq_len = 7
in_vocab, out_vocab, dataset = read_data(max_seq_len)
dataset[0]

2含注意力机制的编码器—解码器

含注意力机制的编码器-解码器架构是深度学习中用于序列到序列任务的一种模型,特别是在机器翻译领域非常流行。这种架构由两部分组成:编码器和解码器,以及一个注意力机制,用于提高翻译的准确性和流畅性。

基本概念和工作原理:

  1. 编码器(Encoder)

    • 编码器的主要任务是读取输入序列(例如,源语言的句子),并将其转换成一个固定大小的内部表示,通常称为上下文向量(context vector)或者编码状态。
    • 这个内部表示捕捉了输入序列的主要信息,并将其传递给解码器。
  2. 解码器(Decoder)

    • 解码器负责生成输出序列(例如,目标语言的句子),通常是一个词一个词地生成。
    • 在每一步生成新的词时,解码器不仅考虑自己的先前状态,还考虑编码器的输出。
  3. 注意力机制(Attention Mechanism)

    • 注意力机制允许解码器在生成每个词时,能够“关注”编码器输出的特定部分。
    • 这意味着解码器可以动态地聚焦于输入序列中与当前生成的词最相关的部分,而不是使用一个固定大小的上下文向量。
    • 这通常通过计算输入序列中每个词与当前解码器状态之间的相似度或相关性来实现。
  4. 工作原理

    • 在编码阶段,编码器处理输入序列,并生成一系列隐藏状态(hidden states)。
    • 在解码阶段,解码器在生成每个词之前,使用注意力机制来计算一个加权的编码器隐藏状态的和,这个加权和代表了输入序列的“注意力分布”。
    • 这个加权和与解码器的当前状态一起,用于生成下一个词。
  5. 优势

    • 通过注意力机制,模型能够生成更加准确和流畅的翻译,因为它能够更有效地利用输入序列中的信息。
    • 注意力机制还提供了一种解释模型决策过程的方式,即可以可视化模型在生成每个词时关注了输入序列的哪些部分。
  6. 变体

    • 有许多基于这种架构的变体,例如带有多层注意力的模型,或者使用不同类型注意力机制(如自注意力)的模型。

2.1 编码器

在编码器中,我们将输入语言的词索引通过词嵌入层得到词的表征,然后输入到一个多层门控循环单元中

class Encoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 drop_prob=0, **kwargs):
        super(Encoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size, num_hiddens, num_layers, dropout=drop_prob)

    def forward(self, inputs, state):
        # 输入形状是(批量大小, 时间步数)。将输出互换样本维和时间步维
        embedding = self.embedding(inputs.long()).permute(1, 0, 2) # (seq_len, batch, input_size)
        return self.rnn(embedding, state)

    def begin_state(self):
        return None

创建一个批量大小为4、时间步数为7的小批量序列输入。设门控循环单元的隐藏层个数为2,隐藏单元个数为16。编码器对该输入执行前向计算后返回的输出形状为(时间步数, 批量大小, 隐藏单元个数)。门控循环单元在最终时间步的多层隐藏状态的形状为(隐藏层个数, 批量大小, 隐藏单元个数)。对于门控循环单元来说,state就是一个元素,即隐藏状态;如果使用长短期记忆,state是一个元组,包含两个元素即隐藏状态和记忆细胞。

encoder = Encoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
output, state = encoder(torch.zeros((4, 7)), encoder.begin_state())
output.shape, state.shape # GRU的state是h, 而LSTM的是一个元组(h, c)

2.2注意力机制

定义的函数𝑎𝑎:将输入连结后通过含单隐藏层的多层感知机变换。其中隐藏层的输入是解码器的隐藏状态与编码器在所有时间步上隐藏状态的一一连结,且使用tanh函数作为激活函数。输出层的输出个数为1。两个Linear实例均不使用偏差。其中函数𝑎𝑎定义里向量𝑣𝑣的长度是一个超参数,即attention_size

注意力机制的输入包括查询项、键项和值项。设编码器和解码器的隐藏单元个数相同。这里的查询项为解码器在上一时间步的隐藏状态,形状为(批量大小, 隐藏单元个数);键项和值项均为编码器在所有时间步的隐藏状态,形状为(时间步数, 批量大小, 隐藏单元个数)。注意力机制返回当前时间步的背景变量,形状为(批量大小, 隐藏单元个数)。

def attention_model(input_size, attention_size):
    model = nn.Sequential(nn.Linear(input_size, attention_size, bias=False),
                          nn.Tanh(),
                          nn.Linear(attention_size, 1, bias=False))
    return model
def attention_forward(model, enc_states, dec_state):
    """
    enc_states: (时间步数, 批量大小, 隐藏单元个数)
    dec_state: (批量大小, 隐藏单元个数)
    """
    # 将解码器隐藏状态广播到和编码器隐藏状态形状相同后进行连结
    dec_states = dec_state.unsqueeze(dim=0).expand_as(enc_states)
    enc_and_dec_states = torch.cat((enc_states, dec_states), dim=2)
    e = model(enc_and_dec_states)  # 形状为(时间步数, 批量大小, 1)
    alpha = F.softmax(e, dim=0)  # 在时间步维度做softmax运算
    return (alpha * enc_states).sum(dim=0)  # 返回背景变量

seq_len, batch_size, num_hiddens = 10, 4, 8
model = attention_model(2*num_hiddens, 10) 
enc_states = torch.zeros((seq_len, batch_size, num_hiddens))
dec_state = torch.zeros((batch_size, num_hiddens))
attention_forward(model, enc_states, dec_state).shape

在上面的例子中,编码器的时间步数为10,批量大小为4,编码器和解码器的隐藏单元个数均为8。注意力机制返回一个小批量的背景向量,每个背景向量的长度等于编码器的隐藏单元个数。因此输出的形状为(4, 8)。

2.3 含注意力机制的解码器

在解码器的前向计算中,我们先通过刚刚介绍的注意力机制计算得到当前时间步的背景向量。由于解码器的输入来自输出语言的词索引,我们将输入通过词嵌入层得到表征,然后和背景向量在特征维连结。我们将连结后的结果与上一时间步的隐藏状态通过门控循环单元计算出当前时间步的输出与隐藏状态。最后,我们将输出通过全连接层变换为有关各个输出词的预测,形状为(批量大小, 输出词典大小)。

class Decoder(nn.Module):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 attention_size, drop_prob=0):
        super(Decoder, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.attention = attention_model(2*num_hiddens, attention_size)
        # GRU的输入包含attention输出的c和实际输入, 所以尺寸是 num_hiddens+embed_size
        self.rnn = nn.GRU(num_hiddens + embed_size, num_hiddens, 
                          num_layers, dropout=drop_prob)
        self.out = nn.Linear(num_hiddens, vocab_size)

    def forward(self, cur_input, state, enc_states):
        """
        cur_input shape: (batch, )
        state shape: (num_layers, batch, num_hiddens)
        """
        # 使用注意力机制计算背景向量
        c = attention_forward(self.attention, enc_states, state[-1])
        # 将嵌入后的输入和背景向量在特征维连结, (批量大小, num_hiddens+embed_size)
        input_and_c = torch.cat((self.embedding(cur_input), c), dim=1) 
        # 为输入和背景向量的连结增加时间步维,时间步个数为1
        output, state = self.rnn(input_and_c.unsqueeze(0), state)
        # 移除时间步维,输出形状为(批量大小, 输出词典大小)
        output = self.out(output).squeeze(dim=0)
        return output, state

    def begin_state(self, enc_state):
        # 直接将编码器最终时间步的隐藏状态作为解码器的初始隐藏状态
        return enc_state

3 训练模型

实现`batch_loss`函数时,我们采用解码器处理序列数据。在解码的初始时间步,输入是特殊字符BOS。随后,解码器采用强制教学策略,即每个时间步的输入是目标序列在上一步的输出。为了处理可能的填充项,我们引入掩码变量来避免这些项在计算损失时被考虑。
 

def batch_loss(encoder, decoder, X, Y, loss):
    batch_size = X.shape[0]
    enc_state = encoder.begin_state()
    enc_outputs, enc_state = encoder(X, enc_state)
    # 初始化解码器的隐藏状态
    dec_state = decoder.begin_state(enc_state)
    # 解码器在最初时间步的输入是BOS
    dec_input = torch.tensor([out_vocab.stoi[BOS]] * batch_size)
    # 我们将使用掩码变量mask来忽略掉标签为填充项PAD的损失, 初始全1
    mask, num_not_pad_tokens = torch.ones(batch_size,), 0
    l = torch.tensor([0.0])
    for y in Y.permute(1,0): # Y shape: (batch, seq_len)
        dec_output, dec_state = decoder(dec_input, dec_state, enc_outputs)
        l = l + (mask * loss(dec_output, y)).sum()
        dec_input = y  # 使用强制教学
        num_not_pad_tokens += mask.sum().item()
        # EOS后面全是PAD. 下面一行保证一旦遇到EOS接下来的循环中mask就一直是0
        mask = mask * (y != out_vocab.stoi[EOS]).float()
    return l / num_not_pad_tokens
def train(encoder, decoder, dataset, lr, batch_size, num_epochs):
    # 初始化编码器和解码器的优化器,使用Adam算法,学习率分别为lr
    enc_optimizer = torch.optim.Adam(encoder.parameters(), lr=lr)
    dec_optimizer = torch.optim.Adam(decoder.parameters(), lr=lr)

    # 定义损失函数为交叉熵损失
    loss = nn.CrossEntropyLoss(reduction='none')
    # 使用DataLoader加载数据集,设置批量大小和打乱顺序
    data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    # 进行num_epochs轮训练
    for epoch in range(num_epochs):
        l_sum = 0.0
        # 遍历数据集的每个批次
        for X, Y in data_iter:
            # 清空梯度
            enc_optimizer.zero_grad()
            dec_optimizer.zero_grad()
            # 计算当前批次的损失
            l = batch_loss(encoder, decoder, X, Y, loss)
            # 反向传播
            l.backward()
            # 更新编码器和解码器的参数
            enc_optimizer.step()
            dec_optimizer.step()
            # 累加损失
            l_sum += l.item()
        # 每10轮输出一次平均损失
        if (epoch + 1) % 10 == 0:
            print("epoch %d, loss %.3f" % (epoch + 1, l_sum / len(data_iter)))

embed_size, num_hiddens, num_layers = 64, 64, 2
attention_size, drop_prob, lr, batch_size, num_epochs = 10, 0.5, 0.01, 2, 50
encoder = Encoder(len(in_vocab), embed_size, num_hiddens, num_layers,
                  drop_prob)
decoder = Decoder(len(out_vocab), embed_size, num_hiddens, num_layers,
                  attention_size, drop_prob)
train(encoder, decoder, dataset, lr, batch_size, num_epochs)

训练结果:

4 预测不定长的序列

def translate(encoder, decoder, input_seq, max_seq_len):
    # 将输入序列分割成单词列表
    in_tokens = input_seq.split(' ')
    # 添加EOS和PAD,使序列长度达到max_seq_len
    in_tokens += [EOS] + [PAD] * (max_seq_len - len(in_tokens) - 1)
    # 将输入序列转换为张量
    enc_input = torch.tensor([[in_vocab.stoi[tk] for tk in in_tokens]]) # batch=1
    # 初始化编码器状态
    enc_state = encoder.begin_state()
    # 编码器前向传播
    enc_output, enc_state = encoder(enc_input, enc_state)
    # 初始化解码器输入和状态
    dec_input = torch.tensor([out_vocab.stoi[BOS]])
    dec_state = decoder.begin_state(enc_state)
    # 初始化输出序列
    output_tokens = []
    # 循环max_seq_len次
    for _ in range(max_seq_len):
        # 解码器前向传播
        dec_output, dec_state = decoder(dec_input, dec_state, enc_output)
        # 获取预测结果
        pred = dec_output.argmax(dim=1)
        # 将预测结果转换为对应的单词
        pred_token = out_vocab.itos[int(pred.item())]
        # 如果预测结果为EOS,则结束循环
        if pred_token == EOS:  # 当任一时间步搜索出EOS时,输出序列即完成
            break
        else:
            # 将预测结果添加到输出序列中
            output_tokens.append(pred_token)
            # 更新解码器输入
            dec_input = pred
    # 返回输出序列
    return output_tokens

测试一下模型。

input_seq = 'ils regardent .'
translate(encoder, decoder, input_seq, max_seq_len)

输入法语句子“ils regardent.”,翻译后的英语句子应该是“they are watching.”。

5 评价翻译结果

BLEU(Bilingual Evaluation Understudy)是一种广泛使用的机器翻译自动评价指标,用于评估机器翻译系统的性能。BLEU 分数通过计算候选翻译与一组参考翻译之间的 n-gram 匹配精度来评估翻译质量。

下面来实现BLEU的计算。

def bleu(pred_tokens, label_tokens, k):
    # 计算预测序列和标签序列的长度
    len_pred, len_label = len(pred_tokens), len(label_tokens)
    
    # 初始化 BLEU 分数,使用几何平均数的指数形式
    score = math.exp(min(0, 1 - len_label / len_pred))
    
    # 遍历 n-gram 的范围(从 1 到 k)
    for n in range(1, k + 1):
        # 初始化匹配数量和标签子串计数器
        num_matches, label_subs = 0, collections.defaultdict(int)
        
        # 统计标签序列中 n-gram 的出现次数
        for i in range(len_label - n + 1):
            label_subs[''.join(label_tokens[i: i + n])] += 1
        
        # 遍历预测序列,检查是否与标签序列中的 n-gram 匹配
        for i in range(len_pred - n + 1):
            if label_subs[''.join(pred_tokens[i: i + n])] > 0:
                num_matches += 1
                label_subs[''.join(pred_tokens[i: i + n])] -= 1
        
        # 更新 BLEU 分数,使用 n-gram 的精确度加权
        score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n))
    
    # 返回最终的 BLEU 分数
    return score
def score(input_seq, label_seq, k):
    pred_tokens = translate(encoder, decoder, input_seq, max_seq_len)
    label_tokens = label_seq.split(' ')
    print('bleu %.3f, predict: %s' % (bleu(pred_tokens, label_tokens, k),
                                      ' '.join(pred_tokens)))

预测结果:

三 小结

如果编码器和解码器的隐藏单元个数或层数不同,我们可以通过线性变换来改变解码器的初始隐藏状态。具体来说,我们可以使用一个线性层将编码器的最后一个隐藏状态映射到解码器的状态空间,然后使用这个映射后的状态作为解码器的初始隐藏状态。

BLEU 分数虽然能够提供一个相对客观的评估标准,但它仍然存在一些局限性。例如,BLEU 分数可能无法准确反映翻译的流畅性和语义准确性。此外,BLEU 分数对参考翻译的选择非常敏感,不同的参考翻译可能会得到不同的分数。因此,在实际应用中,BLEU 分数通常需要与其他评价指标和人工评估相结合,以更全面地评估机器翻译系统的性能。

  • 17
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值