- 博客(12)
- 收藏
- 关注
原创 基于隐语的VisionTransformer框架
然而,VisionTransformer模型在处理图像时可能会忽略一些重要的细节信息,尤其是在处理密集的场景或具有大量小尺寸物体的图像时。基于隐语的VisionTransformer框架可以帮助提高VisionTransformer模型在处理图像时的性能,尤其是在需要捕捉细节信息的场景下。为了解决这个问题,基于隐语的VisionTransformer框架引入了隐语编码器,它可以更好地捕捉图像中的局部细节信息。隐语编码器是一个额外的编码器模块,它以多尺度的方式对输入图像进行编码,并在多个层次上提供语义信息。
2024-06-30 10:35:30 354
原创 组件介绍与自定义开发
总之,自定义开发组件是一项需要技能和经验的工作,但它可以为软件开发提供更高效和可靠的解决方案。设计组件:根据需求,设计组件的接口和内部实现,确定组件的输入、输出和其他关键要素。设计模式和软件架构:了解不同的设计模式和软件架构,以便设计和实现高效可靠的组件。测试和调试技能:能够进行单元测试和集成测试,并能够调试和修复组件中的错误和问题。编程语言和工具:根据具体需求和环境,选择适合的编程语言和开发工具进行组件开发。测试和调试:对组件进行单元测试和集成测试,检查组件的功能是否按照预期工作。
2024-06-30 10:33:43 345
原创 SML入门/基于SPU迁移机器学习算法实践学习笔记
训练完成后,你可以使用SML的库函数来评估模型的性能,比如计算准确率、精确率和召回率等。总结来说,基于SPU迁移机器学习算法的实践学习过程包括学习SML基本语法、导入机器学习库、数据预处理、特征选择、模型训练和评估、模型优化等步骤。模型优化:如果模型性能不理想,你可以使用SML的库函数来进行模型优化,比如使用交叉验证、调整超参数等。你还可以使用SML的库函数来进行特征选择和模型集成等操作,以提高模型的性能。特征选择:在训练模型之前,你可能还需要对数据进行特征选择操作,以减少特征的数量并提高模型的性能。
2024-06-21 15:35:02 1611
原创 密态引擎SPU框架介绍
总的来说,SPU框架是一种用于支持和管理SPU技术的软件或硬件平台,它提供了一种安全的环境和机制,使应用程序能够在SPU中执行安全计算,保护敏感数据和系统安全。安全执行环境:SPU框架提供了一种安全的执行环境,使得应用程序能够在SPU中执行安全计算。这可以通过加密、数字签名、安全通道等手段来实现。SPU框架的目标是提供一种安全的环境,使应用程序能够使用SPU执行安全计算,同时保护敏感数据免受外部攻击。SPU 提供硬件级别的加密和解密功能,能够处理对称和非对称加密算法,确保数据在传输和存储过程中的安全性。
2024-06-21 15:31:48 293
原创 XGB算法与SGB算法开发实践
2. 模型训练与评估:教程提供了使用树模型的步骤,涵盖数据准备、训练、参数设置、执行、评估等阶段。SGB用于预训练,模型保存和加载也是关键步骤,SGB支持模型保存,而SS-XGB目前尚不支持。开发实践中需要注意数据准备、模型定义、超参数调优、模型训练、模型评估和模型保存等环节,以获取最佳的模型效果。通过SS-XGB和SGB等算法的应用,以及模型训练与评估的实践指导,展示了提升模型性能和数据利用的有效途径。基于纵向数据集的决策树模型,包括纵向树模型与纵向联合建模,强调其在提升AUC和数据价值上的优势。
2024-06-21 15:29:40 362
原创 逻辑回归LR与广义线性模型GLM开发实践笔记
广义线性模型(GLM):风险保费预测,根据要提供的保障责任,计算预期总索赔额•直接对纯保费建模 ·tweedie 分布(1, 2) •也可以通过两步建模间接近似:纯保费=索赔次数*平均索赔金额 ·索赔次数:泊松分布、负二项分布 •平均索赔金额:伽马分布、逆高斯分布 线性回归:它是GLM的一个基本形式,其假设响应变量 Y的真实值由两部分组成Yactual =βo+x1βI+x2β2+·…对于广义线性模型,目标变量可以是二分类变量、多分类变量或连续变量。可以使用模型对新的样本进行分类,预测目标变量的取值。
2024-06-21 15:27:25 392
原创 基于隐私保护的机器学习算法介绍
1. 学习感受:预处理与PSI,类似Pandas的DataFrame,这里针对Fed的封装,有H、V、Mix三种切分,对应行(每一方特征一致,有各自的样本)、列(先经过PSI样本对齐)和混合(可以先水平再垂直,也可以先垂直再水平),FedNdarray,可水平或垂直,不支持混合切分。线性回归,垂直切分,SSRegression,支持线性和逻辑回归,secret sharing,大通信带宽,HESSLogisticRegression,除了SS还有HE,计算量大,适于带宽受限,只逻辑回归;
2024-06-21 15:26:14 1342
原创 SecretFlow与Secretnote的安装部署
现在,您已经成功地安装和部署了SecretFlow和Secretnote。您可以使用SecretFlow创建和管理加密流程,并使用Secretnote创建和查看加密笔记。打开终端或命令提示符窗口,并导航到解压的SecretFlow和Secretnote目录。SecretFlow将在默认端口(通常为3000)上启动,你可以在浏览器中访问。Secretnote将在默认端口(通常为3001)上启动,你可以在浏览器中访问。在终端或命令提示符窗口中导航到SecretFlow目录。在SecretFlow目录下,复制。
2024-06-21 15:24:46 1460
原创 隐语架构概览
Data Analysis——SCQL:一种多方安全数据分析系统,使互不信任的参与方在保护自己数据隐私的情况下,完成多方数据分析任务。PIR是用户查询数据而服务端无法得知用户查询的是哪些数据。密态引擎:SPU(桥接上层算法和底层安全协议)、HEU(低门槛高性能的同态加密库)、TEEU(有跨域管控能力的密态计算枢纽)。KUSCIA:屏蔽不同机构间基础设施的差异,为跨机构协作提供丰富可靠的资源管理和任务调度能力。混合编译调度:RayFed是在Ray基础上构建的专注于跨机构的分布式计算调度框架。
2024-06-21 15:20:16 211
原创 隐私计算开源助力数据要素流通
通过使用开源软件,数据要素的流通可以更加安全和可信。开源软件不仅可以确保算法和协议的透明度,还能够吸引更多的开发者参与进来,共同改进和完善系统的安全性和性能。通过开源软件,可以共同制定隐私计算的标准和规范,使不同系统和平台之间的数据要素流通更加顺畅和一致。隐私计算是一种保护数据隐私的技术,可以在不暴露原始数据的情况下进行数据分析和计算。总而言之,隐私计算的开源助力可以提高数据要素流通的安全性和可信度,促进数据的共享和合作。通过开源软件,我们可以构建更加安全和可靠的隐私保护系统,推动数据驱动的创新和发展。
2024-06-21 15:17:23 362
原创 第1课笔记:数据可信流通:从运维信任到技术信任
通过使用这些技术手段,可以减少人为因素对数据可信流通的影响,提高数据的安全性和可靠性。然而,随着技术的发展和数据量的增加,传统的运维信任模式逐渐暴露出一些问题。其次,人为因素可能导致数据的泄露或篡改,这对于数据的可信流通造成了威胁。运维人员负责管理和维护数据的各个环节,他们需要具备高度的责任感和专业知识,确保数据的安全和可靠性。它涉及到各种数据的收集、存储、传输和使用,包括个人数据、企业数据、政府数据等等。数据的朔源,数据使用范围可界定,流通过程可追溯,安全风险可防范,促进数据流通合规高效赋能实体经济。
2024-06-21 15:13:06 388 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人