1、数据要素流转与数据内外循环
数据生命周期:
数据采集加工:采集、传输、存储、加工
数据价值释放:提供&使用,传输、服务、销毁
内舒要素内外循环:
内循环:数据持有方对数据使用和安全拥有全责
外循环:离开持有方后,持有方任有责任
2、数据外循环中的信任焦虑:
是否数据泄露:不可信内部人员
是否数据滥用导致连带责任:不按约定使用
数据源的合规性是否得到个人用户的充分授权:用户隐私泄露
关键问题一:数据权属:
三权分置:数据产品经营权、数据加工使用权、数据资源持有权
信任焦虑的解决方案:从主体信任到技术信任,基于安全可信的技术信任体系是基础
重点技术:1、匿名化技术;2、数据互联层面:建立密态数据互联网络;3、数据使用权的跨域管控:区块链、可信计算。
技术信任需要完备的信任链
3、数据要素流通对隐私计算的期望
隐私计算三个原则:1)原始数据不出域,数据可用不可见;2)数据可算不可识;3)数据使用可控可计量
隐私计算产品能力度量尺度要一致
隐私计算需要降低接入门槛:开源-》(普惠、安全提升、行业标准化)
4、隐私计算开源助力数据要素流通
关于隐语技术优势:
统一架构
原生应用
开放拓展
性能卓越
多轮的安全验证,
多次测试&验证
隐私计算是一种保护数据隐私的技术,可以在不暴露原始数据的情况下进行数据分析和计算。随着数据的不断增长,数据要素的流通和共享变得越来越重要。开源软件的使用可以帮助推动隐私计算在数据要素流通中的应用。
开源软件的特点是源代码公开,可以由任何人使用、修改和分发。开源软件不仅能够降低成本,提高透明度,还能够促进创新和合作。在隐私计算领域,开源软件可以提供各种工具和框架,帮助开发者快速构建隐私保护的应用。
通过使用开源软件,数据要素的流通可以更加安全和可信。开源软件不仅可以确保算法和协议的透明度,还能够吸引更多的开发者参与进来,共同改进和完善系统的安全性和性能。此外,开源软件也能够帮助用户更好地了解系统的工作原理和数据处理过程,增加对隐私保护的信任度。
隐私计算的开源助力还可以推动数据要素流通的标准化和规范化。通过开源软件,可以共同制定隐私计算的标准和规范,使不同系统和平台之间的数据要素流通更加顺畅和一致。这将促进数据要素的广泛应用和共享,推动数据驱动的创新和发展。
总而言之,隐私计算的开源助力可以提高数据要素流通的安全性和可信度,促进数据的共享和合作。通过开源软件,我们可以构建更加安全和可靠的隐私保护系统,推动数据驱动的创新和发展。