- 博客(9)
- 收藏
- 关注
原创 Learning to Generate an Unbiased Scene Graph by Using Attribute-Guided Predicate Features 阅读笔记
问题定义:无偏场景图动机:现有重平衡(重采样)策略不能很好的平衡头部类和尾部类,原因是同一张图像上头尾往往伴随着出现,图像级别的重采样,不行我们的贡献/解决方案,使用属性为导向的谓词特征重构一个完全平衡的训练集,达到解耦头尾谓词的目的具体描述方案,分两步,第一步训练一个PFRL模型,第二步用类平衡特征数据集微调分类器,这个数据集由A-PFG模型创建的仔细解释A-PFG,双重变分自编码器dual VAE,输入为谓词特征和属性嵌入,获得合成谓词特征,以交叉重构和分布对齐的操作,学习属性中的上下文信息。
2023-07-10 19:41:26 139 1
原创 SGTR: End-to-end Scene Graph Generation阅读笔记
sword标志为论文复现结果, 表示FCSGG模型中独特的物体检测器和backbone,*为重采样策略的模型,在论文的方法(Ours)中 表示TOP-K取1时的性能,Time/Sec为生成一张场景图的耗时,可以看到论文方法在效率和性能上取得平衡,并且论文方法的mR@K远超过其他端到端方法(DETR类),说明论文方法能改善数据集标注中的长尾问题。,在指示特征子解码器中使用实体特征更新,更新后的指示特征能够感知与实体节点间的相关性,从而能更好的指示谓词节点寻找其对应的实体节点;
2023-04-09 09:28:12 879 4
原创 python 解决no module name ‘“resize”
改变pytorch版本和torchvision版本,我一开始的torchvision版本是0.1.8,重新安装0.3.0后解决了(可以分开试)scipy版本过高,1.3后的版本删除了resize。
2023-04-07 09:31:01 188 1
原创 pycharm远程开发功能总结
1.在pycharm内,做映射(本地----服务器),需要部署本地路径,服务器路径,配置远程虚拟环境,远程服务器...没具体做过。2.pycharm----文件----远程开发Beta----SSH开发----输入服务器信息----选项目文件夹----连接。配置解释器(右下角),注意要选本地解释器!,因为已经是远程开发了,相当于在服务器上打开一个pycharm,显示在本地。如需命令行配置,点开 运行----配置----在环境中输入需要读取的命令行,把路径改为项目文件夹。
2023-04-06 21:13:32 212 1
原创 Resistance Training Using Prior Bias:Toward Unbiased Scene Graph Generation阅读笔记
场景图数据集中,关系的标注存在长尾问题,导致模型生成场景图时,物体间关系大部分是粗粒度的谓词(头部类),但辅助下游任务需要细粒度的关系(尾部类)提供更多信息,无偏场景图生成任务由此被提出,目的是消除数据集中的训练偏差来的影响。在没看这篇论文前,虽然在组会上接触了很多次无偏场景图,但对于无偏场景图的动机,整体的流程,方法针对什么,怎么起作用,其实没有太多自己的思考,在做完这篇汇报后才有了一定的理解。VG,VG150(由VG数据集中出现最频繁的150个物体类别和50个关系组成的数据集)
2023-03-28 18:45:43 160
原创 Not All Relations are Equal: Mining Informative Labels for Scene Graph Generation阅读笔记
SGG初始模型只使用了隐性关系进行预训练,通过初始模型对数据集归纳后,利用新数据集对模型再训练,如图2,输入一张图像,生成场景图,对于隐性标签(蓝实线),论文方法在归纳操作中不进行处理,对于标注显性关系的样本X,使用训练的初始模型得到X的归纳标签,再将归纳标签和真实标签组合作为样本X新的真实标签,随后使用优化过的数据集再次训练。
2023-03-22 21:45:04 137 1
原创 Boosting Scene GraphGeneration with Visual Relation Saliency 阅读笔记
我们看向这张图时会把注意力放在和两个三元组上,自发的描述相对重要的关系,而现有场景图方法不具备这种感知关系的视觉 显著性的能力,这不符合人类看图像的本能,并且由于场景图内信息太过琐碎,可能导致下游任务在进行时受到干扰。
2023-03-07 09:34:25 283 1
原创 The Devil is in the Labels: Noisy Label Correction forRobust Scene Graph Generation阅读笔记
Noisy Label Correction:论文方法,对噪声标签进行修正。for Robust Scene Graph Generation:论文任务,生成更鲁棒的场景图,鲁棒的场景图生成。
2023-03-01 14:55:27 470 2
原创 TransMVSNet阅读笔记
首句:一句话总结了论文的工作最大的特点,即基于对****. 特征匹配(这也是方法的核心)的探索提出的第二句:通过类比MVS回到**特征匹配**任务的本质,为了更好的进行特征匹配,引出了是这个网络的核心模块,利用类间类内注意力去增强图片间和图片内的长距离上下文信息。第三句:对论文方法进行补充。FMT的附加模块**Adaptive Receptive Field 自适应感受野模块ARF**:。作用:确保有一个平滑的特征范围;
2022-11-18 10:31:49 3202 9
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人