代码随想录77——二叉树18——最大二叉树

🌈hello,你好鸭,我是Ethan,西安电子科技大学大三在读,很高兴你能来阅读。

✔️目前博客主要更新Java系列、项目案例、计算机必学四件套等。
🏃人生之义,在于追求,不在成败,勤通大道。加油呀!

🔥个人主页:Ethan Yankang
🔥推荐:史上最强八股文 || 一分钟看完我的上千篇博客

🔥温馨提示:划到文末发现专栏彩蛋   点击这里直接传送

🔥本篇概览:数据结构与算法 || 详细讲解了最大二叉树的构造过程算法,以及中间的区间不变量的原则。🌈⭕🔥


【计算机领域一切迷惑的源头都是基本概念的模糊,算法除外】


🌈序言

算法乃我长久之志也,此关必过。今日得此代码随想录之良品辅助,应按此路学之习之,而长久不可懈怠。

前一系列文章详细讲解了从中序与后序遍历序列构造二叉树的算法,建议先将这部分知识掌握之后再来学习本篇内容,点击查看。


🔥 代码随想录76——二叉树17——从中序与后序遍历序列构造二叉树-CSDN博客

🔥 代码随想录系列所有算法精讲一键查阅


题目:

654.最大二叉树

力扣题目地址(opens new window)

给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下:

  • 二叉树的根是数组中的最大元素。
  • 左子树是通过数组中最大值左边部分构造出的最大二叉树。
  • 右子树是通过数组中最大值右边部分构造出的最大二叉树。

通过给定的数组构建最大二叉树,并且输出这个树的根节点。

示例 :



🔥思路分析:

最大二叉树的构建过程如下:

654.最大二叉树

构造树一般采用的是前序遍历,因为先构造中间节点,然后递归构造左子树和右子树。


1.确定递归函数的参数和返回值

参数传入的是存放元素的数组,返回该数组构造的二叉树的头结点,返回类型是指向节点的指针。

代码如下:

TreeNode* constructMaximumBinaryTree(vector<int>& nums)


2.确定终止条件

题目中说了输入的数组大小一定是大于等于1的,所以我们不用考虑小于1的情况,那么当递归遍历的时候,如果传入的数组大小为1,说明遍历到了叶子节点了

那么应该定义一个新的节点,并把这个数组的数值赋给新的节点,然后返回这个节点。 这表示一个数组大小是1的时候,构造了一个新的节点,并返回。



代码如下:

TreeNode* node = new TreeNode(0);
if (nums.size() == 1) {
    node->val = nums[0];
    return node;
}


3.确定单层递归的逻辑

这里有三步工作

(1)先要找到数组中最大的值和对应的下标, 最大的值构造根节点,下标用来下一步分割数组。

代码如下:

int maxValue = 0;
int maxValueIndex = 0;
for (int i = 0; i < nums.size(); i++) {
    if (nums[i] > maxValue) {
        maxValue = nums[i];
        maxValueIndex = i;
    }
}
TreeNode* node = new TreeNode(0);
node->val = maxValue;

(2)最大值所在的下标左区间 构造左子树

这里要判断maxValueIndex > 0,因为要保证左区间至少有一个数值。

代码如下:

if (maxValueIndex > 0) {
    vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);
    node->left = constructMaximumBinaryTree(newVec);
}


(3)最大值所在的下标右区间 构造右子树

判断maxValueIndex < (nums.size() - 1),确保右区间至少有一个数值。

代码如下:

if (maxValueIndex < (nums.size() - 1)) {
    vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());
    node->right = constructMaximumBinaryTree(newVec);
}

这样我们就分析完了,整体代码如下:(详细注释)

最终代码

class Solution {
public:
    TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
        TreeNode* node = new TreeNode(0);
        if (nums.size() == 1) {
            node->val = nums[0];
            return node;
        }
        // 找到数组中最大的值和对应的下标
        int maxValue = 0;
        int maxValueIndex = 0;
        for (int i = 0; i < nums.size(); i++) {
            if (nums[i] > maxValue) {
                maxValue = nums[i];
                maxValueIndex = i;
            }
        }
        node->val = maxValue;
        // 最大值所在的下标左区间 构造左子树
        if (maxValueIndex > 0) {
            vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);
            node->left = constructMaximumBinaryTree(newVec);
        }
        // 最大值所在的下标右区间 构造右子树
        if (maxValueIndex < (nums.size() - 1)) {
            vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());
            node->right = constructMaximumBinaryTree(newVec);
        }
        return node;
    }
};

 



以上代码比较冗余,效率也不高,每次还要切割的时候每次都要定义新的vector(也就是数组),但逻辑比较清晰。

和文章二叉树:构造二叉树登场! (opens new window)中一样的优化思路,就是每次分隔不用定义新的数组,而是通过下标索引直接在原数组上操作。

优化后代码如下:

class Solution {
private:
    // 在左闭右开区间[left, right),构造二叉树
    TreeNode* traversal(vector<int>& nums, int left, int right) {
        if (left >= right) return nullptr;

        // 分割点下标:maxValueIndex
        int maxValueIndex = left;
        for (int i = left + 1; i < right; ++i) {
            if (nums[i] > nums[maxValueIndex]) maxValueIndex = i;
        }

        TreeNode* root = new TreeNode(nums[maxValueIndex]);

        // 左闭右开:[left, maxValueIndex)
        root->left = traversal(nums, left, maxValueIndex);

        // 左闭右开:[maxValueIndex + 1, right)
        root->right = traversal(nums, maxValueIndex + 1, right);

        return root;
    }


public:
    TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
        return traversal(nums, 0, nums.size());
    }
};

 



拓展

可以发现上面的代码看上去简洁一些,主要是因为第二版其实是允许空节点进入递归,所以不用在递归的时候加判断节点是否为空

第一版递归过程:(加了if判断,为了不让空节点进入递归)


if (maxValueIndex > 0) { // 这里加了判断是为了不让空节点进入递归
    vector<int> newVec(nums.begin(), nums.begin() + maxValueIndex);
    node->left = constructMaximumBinaryTree(newVec);
}

if (maxValueIndex < (nums.size() - 1)) { // 这里加了判断是为了不让空节点进入递归
    vector<int> newVec(nums.begin() + maxValueIndex + 1, nums.end());
    node->right = constructMaximumBinaryTree(newVec);
}

 递归过程: (如下代码就没有加if判断)

root->left = traversal(nums, left, maxValueIndex);

root->right = traversal(nums, maxValueIndex + 1, right);

 

第二版代码是允许空节点进入递归,所以没有加if判断,当然终止条件也要有相应的改变。

第一版终止条件,是遇到叶子节点就终止,因为空节点不会进入递归。

第二版相应的终止条件,是遇到空节点,也就是数组区间为0,就终止了

    


🌈最终代码:

class Solution {
    public TreeNode constructMaximumBinaryTree(int[] nums) {
        return constructMaximumBinaryTree1(nums, 0, nums.length);
    }

    public TreeNode constructMaximumBinaryTree1(int[] nums, int leftIndex, int rightIndex) {
        if (rightIndex - leftIndex < 1) {// 没有元素了
            return null;
        }
        if (rightIndex - leftIndex == 1) {// 只有一个元素
            return new TreeNode(nums[leftIndex]);
        }
        int maxIndex = leftIndex;// 最大值所在位置
        int maxVal = nums[maxIndex];// 最大值
        for (int i = leftIndex + 1; i < rightIndex; i++) {
            if (nums[i] > maxVal){
                maxVal = nums[i];
                maxIndex = i;
            }
        }
        TreeNode root = new TreeNode(maxVal);
        // 根据maxIndex划分左右子树
        root.left = constructMaximumBinaryTree1(nums, leftIndex, maxIndex);
        root.right = constructMaximumBinaryTree1(nums, maxIndex + 1, rightIndex);
        return root;
    }
}

 



🔥今日总结:

区间不变量原则

这里是左闭右开区间原则,刚好塞掉一个maxIndex。

 root.left = constructMaximumBinaryTree1(nums, leftIndex, maxIndex);
 root.right = constructMaximumBinaryTree1(nums, maxIndex + 1, rightIndex);


📣非常感谢你阅读到这里,如果这篇文章对你有帮助,希望能留下你的点赞👍 关注❤收藏✅ 评论💬,大佬三连必回哦!thanks!!!
📚愿大家都能学有所得,功不唐捐!

👇下面是专栏彩蛋系列,你会喜欢的!(为了避免影响算法的简洁与优美,这里直接将之前的几十个专栏简化为3个部分,不过你点击开后发现惊喜。)👇


💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖

热门专栏

🌈🌈专栏彩蛋系列

🌈🌈史上最全八股文,欢迎收藏

🌈🌈一篇文章了解我的上千篇博客

💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值