代码随想录108——贪心算法3——摆动序列

🌈hello,你好鸭,我是Ethan,西安电子科技大学大三在读,很高兴你能来阅读。

✔️目前博客主要更新Java系列、项目案例、计算机必学四件套等。
🏃人生之义,在于追求,不在成败,勤通大道。加油呀!

🔥个人主页:Ethan Yankang
🔥推荐:史上最强八股文 || 一分钟看完我的上千篇博客

🔥温馨提示:划到文末发现专栏彩蛋   点击这里直接传送

🔥本篇概览:数据结构与算法 || 详细讲解了 贪心算法3——摆动序列。🌈⭕🔥


【计算机领域一切迷惑的源头都是基本概念的模糊,算法除外】


🌈序言

算法乃我长久之志也,此关必过。今日得此代码随想录之良品辅助,应按此路学之习之,而长久不可懈怠。

前一系列文章详细讲解了XX,建议先将这部分知识掌握之后再来学习本篇内容,点击查看。


🔥 前一篇章:代码随想录107——贪心算法2——分发饼干-CSDN博客

🔥 代码随想录系列所有算法精讲一键查阅


题目:

376. 摆动序列

力扣题目链接(opens new window)

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。

例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3)  是正负交替出现的。相反, [1,4,7,2,5]  和  [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。

示例 1:

  • 输入: [1,7,4,9,2,5]
  • 输出: 6
  • 解释: 整个序列均为摆动序列。

示例 2:

  • 输入: [1,17,5,10,13,15,10,5,16,8]
  • 输出: 7
  • 解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。

示例 3:

  • 输入: [1,2,3,4,5,6,7,8,9]
  • 输出: 2

剖析题干重点:


🔥思路分析:

直接用dp了,其他的太麻烦了

考虑用动态规划的思想来解决这个问题。

很容易可以发现,对于我们当前考虑的这个数,要么是作为山峰(即 nums[i] > nums[i-1]),要么是作为山谷(即 nums[i] < nums[i - 1])。

  • 设 dp 状态dp[i][0],表示考虑前 i 个数,第 i 个数作为山峰的摆动子序列的最长长度
  • 设 dp 状态dp[i][1],表示考虑前 i 个数,第 i 个数作为山谷的摆动子序列的最长长度

则转移方程为:

  • dp[i][0] = max(dp[i][0], dp[j][1] + 1)其中0 < j < inums[j] < nums[i],表示将 nums[i]接到前面某个山谷后面,作为山峰。
  • dp[i][1] = max(dp[i][1], dp[j][0] + 1),其中0 < j < inums[j] > nums[i],表示将 nums[i]接到前面某个山峰后面,作为山谷。

初始状态:

由于一个数可以接到前面的某个数后面,也可以以自身为子序列的起点,所以初始状态为:dp[0][0] = dp[0][1] = 1


🌈最终代码:

// DP
class Solution {
    public int wiggleMaxLength(int[] nums) {
        // 0 i 作为波峰的最大长度
        // 1 i 作为波谷的最大长度
        int dp[][] = new int[nums.length][2];

        dp[0][0] = dp[0][1] = 1;
        for (int i = 1; i < nums.length; i++){
            //i 自己可以成为波峰或者波谷
            dp[i][0] = dp[i][1] = 1;

            for (int j = 0; j < i; j++){
                if (nums[j] > nums[i]){
                    // i 是波谷
                    dp[i][1] = Math.max(dp[i][1], dp[j][0] + 1);
                }
                if (nums[j] < nums[i]){
                    // i 是波峰
                    dp[i][0] = Math.max(dp[i][0], dp[j][1] + 1);
                }
            }
        }

        return Math.max(dp[nums.length - 1][0], dp[nums.length - 1][1]);
    }
}

今日问题:


🔥今日总结:



📣非常感谢你阅读到这里,如果这篇文章对你有帮助,希望能留下你的点赞👍 关注❤收藏✅ 评论💬,大佬三连必回哦!thanks!!!
📚愿大家都能学有所得,功不唐捐!

👇下面是专栏彩蛋系列,你会喜欢的!(为了避免影响算法的简洁与优美,这里直接将之前的几十个专栏简化为3个部分,不过你点击开后发现惊喜。)👇


💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖

热门专栏

🌈🌈专栏彩蛋系列

🌈🌈史上最全八股文,欢迎收藏

🌈🌈一篇文章了解我的上千篇博客

💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖💖


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值