Python代码:财务数据清洗及公司资产负债状况分析

本文介绍了使用Python中的pandas和matplotlib库对Excel数据进行金融数据分析,包括读取数据、处理缺失值、绘制总资产和总负债线图,以及应用二分法去除异常值,最后计算并可视化资产负债率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import pandas as pd
import matplotlib.pyplot as plt #导入所需包

dt = pd.read_excel("D:\Mengxiang Plastic Manufacturing Company Financial Data.xlsx") #导入excel数据
dt = dt.fillna(0) #将空缺值自动填充为0

plt.figure(figsize=(10, 6)) #绘图区域大小
plt.title("Total Assets") #图片标题
plt.xlabel("Time") #X轴标签
plt.ylabel("Total Assets") #Y轴标签
plt.plot(dt["Time"], dt["Total Assets"]) #绘制总资产线图
plt.show() #显示图片

plt.figure(figsize=(10, 6)) #绘图区域大小
plt.title("Total Liabilities") #图片标题
plt.xlabel("Time") #X轴标签
plt.ylabel("Total Liabilities") #Y轴标签
plt.plot(dt["Time"], dt["Total Liabilities"]) #绘制总负债线图
plt.show() #显示图片

for i in range(175):
  if dt.at[i, "Total Assets"] < 0:
      dt.at[i, "Total Assets"] = dt.at[i, "Total Assets"] * (-1)
  if dt.at[i, "Total Liabilit

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data爱好者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值