压缩感知(ISTA-Net论文)学习笔记

压缩感知(ISTA-Net论文)学习笔记

第一天,主要查找相关视频和笔记,补全预备知识

【nabla算子】与梯度、散度、旋度_哔哩哔哩_bilibili

近端梯度(Proximal Gradient)下降算法的过程以及理解|ISTA算法|LASSO问题_哔哩哔哩_bilibili

数学中常见的arg min,arg max是什么意思_统计学arg-CSDN博客

梯度算子

三角形符号倒过来(▽ )是梯度算子(在空间各方向上的全微分),是微积分中的一个微分算子,叫Hamilton算子,用来表示梯度和散度,读作Nabla。

【论文精读】ISTA软阈值迭代压缩感知(凸优化部分) - 知乎 (zhihu.com)

【论文阅读笔记 2】ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing - 知乎 (zhihu.com)

[重温经典]深度解读ISTA-Net - 知乎 (zhihu.com)

Lasso—原理及最优解 - 知乎 (zhihu.com)

【nabla算子】与梯度、散度、旋度_哔哩哔哩_bilibili

第二天 学习匹配追踪算法

匹配追踪算法
(1) 由于原信号的频率非零值在亚采样后的频域中依然保留较大的值,其中较大的两个可以通过设置阈值,检测出来(图a)。

(2) 然后,假设信号只存在这两个非零值(图b),则可以计算出由这两个非零值引起的干扰(图c)。

(3) 用a减去c,即可得到仅由蓝色非零值和由它导致的干扰值(图d),再设置阈值即可检测出它,得到最终复原频域(图e)

(4) 如果原信号频域中有更多的非零值,则可通过迭代将其一一解出。

以上就是压缩感知理论的核心思想——以比奈奎斯特采样频率要求的采样密度更稀疏的密度对信号进行随机亚采样,由于频谱是均匀泄露的,而不是整体延拓的,因此可以通过特别的追踪方法将原信号恢复。
参考文章:形象易懂讲解算法II——压缩感知

第三天 主要探究如何进行稀疏变换,学习了关于DWT,DCT相关知识

在这里插入图片描述
DWT学习参考视频
DCT学习参考视频
在这里插入图片描述
图片采自此文章 ——形象易懂讲解算法II——压缩感知
真理:
在这里插入图片描述图片采自此文章 ——形象易懂讲解算法II——压缩感知

[压缩感知测量矩阵之有限等距性质(Restricted Isometry Property, RIP)]
(https://blog.csdn.net/jbb0523/article/details/44565647)

压缩感知讲座06:对观测矩阵的探讨
压缩感知讲座02:对稀疏和稀疏矩阵的认识

系列讲解视频

第四天 研读知乎文章

对于向量组A,若存在一组不全为0的实数K,
使在这里插入图片描述
,则称向量组A是线性相关的,否则称它线性无关。

可以这样用一句话概括地描述什么是压缩感知:
如果一个信号在某个变换域是稀疏的,那么就可以用一个与变换基不相关的观测矩阵将变换所得高维信号投影到一个低维空间上,然后通过求解一个优化问题就可以从这些少量的投影中以高概率重构出原信号。
以下引用上文提及的知乎文章

在这里插入图片描述
今晚跑了相关代码~内容更新较慢,后续完成手头任务会重新整理文章,修改相关逻辑

第五天 研究ISTA以及LISTA和Proximal Gradient Algorithm,看论文原文

期间看了以下文章
深度学习:深度压缩感知-从ISTA到LISTA及其pytorch实现方法
近端梯度下降算法(Proximal Gradient Algorithm)
【简读】Hyperparameter Tuning is All You Need for LISTA
软阈值迭代算法(ISTA)和快速软阈值迭代算法(FISTA)

每晚11点后研读~

### ISTA-NET: 深度学习算法实现及其应用 ISTA-NET 是一种基于迭代收缩阈值化算法(Iterative Shrinkage-Thresholding Algorithm, ISTA)的深度学习框架,主要用于稀疏信号重建任务。该方法通过将传统优化中的 ISTA 方法嵌入到神经网络结构中,实现了端到端的学习过程[^1]。 #### 网络架构设计 ISTA-NET 的核心思想在于模仿经典的 ISTA 过程来构建其网络层。每一层对应于一次 ISTA 更新操作,其中涉及的关键组件包括线性变换矩阵、非线性激活函数以及步长参数调整。具体而言: - **线性映射模块**:利用可训练权重矩阵模拟测量数据与原始信号之间的关系。 - **软阈值处理单元**:引入逐元素非线性运算以促进稀疏表示特性。 - **自适应调节机制**:允许各层独立设置最佳松弛因子和正则项系数。 这种设计不仅保留了经典压缩感知理论的优势,还借助现代 GPU 加速技术显著提升了计算效率[^2]。 以下是 Python 实现的一个简化版本示例代码片段: ```python import tensorflow as tf class ISTALayer(tf.keras.layers.Layer): def __init__(self, units=32, input_dim=784): super(ISTALayer, self).__init__() w_init = tf.random_normal_initializer() self.w = tf.Variable( initial_value=w_init(shape=(input_dim, units), dtype="float32"), trainable=True, ) def call(self, inputs): z = tf.matmul(inputs, self.w) output = tf.nn.relu(z - 0.1 * tf.abs(z)) # Soft-threshold operation return output model = tf.keras.Sequential([ISTALayer(units=64, input_dim=128)]) ``` 上述代码定义了一个基本形式的单层 ISTA 结构,并展示了如何将其集成至 Keras 中用于进一步扩展多级联结情况下的整体性能表现评估实验验证环节当中去[^3]。 #### 应用领域概述 由于具备良好的泛化能力和较高的恢复精度水平,在实际工程应用场景方面具有广泛适用价值的主要体现在以下几个方向上: - 图像超分辨率增强(Super Resolution)[^2] - MRI 扫描加速成像(Magnetic Resonance Imaging) - 音频降噪(Audio Denoising) 这些成果表明 ISTA-NET 能够有效解决各类低维观测条件下高维度目标估计难题的同时保持较高程度上的鲁棒性和稳定性特征属性特点所在之处体现得淋漓尽致无遗。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

绿皮的猪猪侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值