级数收敛的技巧

平方级数收敛性判定

如果级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^\infty a_n n=1an收敛,则 a n 2 − a n − 1 2 a_n^2 - a_{n-1}^2 an2an12的级数是否也收敛?

证明:

对于 a n 2 − a n − 1 2 a_n^2 - a_{n-1}^2 an2an12,有
a n 2 − a n − 1 2 = ( a n − a n − 1 ) ( a n + a n − 1 ) a_n^2 - a_{n-1}^2 = (a_n - a_{n-1})(a_n + a_{n-1}) an2an12=(anan1)(an+an1)
由于 ∑ n = 1 ∞ a n \sum\limits_{n=1}^\infty a_n n=1an收敛,所以 a n → 0 a_n \to 0 an0,于是存在 N > 0 N>0 N>0,当 n > N n > N n>N时有
∣ a n ∣ < 1 |a_n| < 1 an<1
因此对足够大的 n n n,有
∣ a n 2 − a n − 1 2 ∣ = ∣ ( a n − a n − 1 ) ( a n + a n − 1 ) ∣ ≤ ∣ a n − a n − 1 ∣ ( ∣ a n ∣ + ∣ a n − 1 ∣ ) < 2 ∣ a n − a n − 1 ∣ \begin{align*} & |a_n^2 - a_{n-1}^2| = |(a_n - a_{n-1})(a_n + a_{n-1})|\\ & \leq |a_n - a_{n-1}|(|a_n| + |a_{n-1}|) < 2|a_n - a_{n-1}| \end{align*} an2an12=(anan1)(an+an1)anan1(an+an1)<2∣anan1
既然 ∑ n = 1 ∞ ( a n − a n − 1 ) \sum\limits_{n=1}^\infty (a_n - a_{n-1}) n=1(anan1)作为一个收敛级数的部分和也收敛,由比较准则知 ∑ n = 1 ∞ ( a n 2 − a n − 1 2 ) \sum\limits_{n=1}^\infty (a_n^2 - a_{n-1}^2) n=1(an2an12)也收敛。

结论: 如果级数 ∑ n = 1 ∞ a n \sum\limits_{n=1}^\infty a_n n=1an收敛,则 a n 2 − a n − 1 2 a_n^2 - a_{n-1}^2 an2an12的级数也收敛。

不等式 ∣ a n 2 − a n − 1 2 ∣ ≤ 2 ∣ a n − a n − 1 ∣ |a_n^2 - a_{n-1}^2| \leq 2|a_n - a_{n-1}| an2an122∣anan1 的证明

步骤1:
a n 2 − a n − 1 2 = ( a n − a n − 1 ) ( a n + a n − 1 ) a_n^2 - a_{n-1}^2 = (a_n - a_{n-1})(a_n + a_{n-1}) an2an12=(anan1)(an+an1),
可得:
∣ a n 2 − a n − 1 2 ∣ = ∣ ( a n − a n − 1 ) ( a n + a n − 1 ) ∣ |a_n^2 - a_{n-1}^2| = |(a_n - a_{n-1})(a_n + a_{n-1})| an2an12=(anan1)(an+an1)

步骤2:
使用不等式 ∣ x y ∣ ≤ ∣ x ∣ ∣ y ∣ |xy| \leq |x||y| xyx∣∣y,其中 x , y x,y x,y为实数,
可得:
∣ ( a n − a n − 1 ) ( a n + a n − 1 ) ∣ ≤ ∣ a n − a n − 1 ∣ ∣ a n + a n − 1 ∣ |(a_n - a_{n-1})(a_n + a_{n-1})| \leq |a_n - a_{n-1}||a_n + a_{n-1}| (anan1)(an+an1)anan1∣∣an+an1

步骤3:
∣ a n + a n − 1 ∣ |a_n + a_{n-1}| an+an1使用三角不等式:
∣ a n + a n − 1 ∣ ≤ ∣ a n ∣ + ∣ a n − 1 ∣ |a_n + a_{n-1}| \leq |a_n| + |a_{n-1}| an+an1an+an1

步骤4:
将步骤3带入步骤2,得:
∣ ( a n − a n − 1 ) ( a n + a n − 1 ) ∣ ≤ ∣ a n − a n − 1 ∣ ( ∣ a n ∣ + ∣ a n − 1 ∣ ) |(a_n - a_{n-1})(a_n + a_{n-1})| \leq |a_n - a_{n-1}|(|a_n| + |a_{n-1}|) (anan1)(an+an1)anan1(an+an1)

步骤5:
利用 ∣ a n ∣ + ∣ a n − 1 ∣ ≤ 2 |a_n| + |a_{n-1}| \leq 2 an+an12,对足够大的 n n n成立,
可得:
∣ a n − a n − 1 ∣ ( ∣ a n ∣ + ∣ a n − 1 ∣ ) ≤ 2 ∣ a n − a n − 1 ∣ |a_n - a_{n-1}|(|a_n| + |a_{n-1}|) \leq 2|a_n - a_{n-1}| anan1(an+an1)2∣anan1

综上,完成了不等式 ∣ a n 2 − a n − 1 2 ∣ ≤ 2 ∣ a n − a n − 1 ∣ |a_n^2 - a_{n-1}^2| \leq 2|a_n - a_{n-1}| an2an122∣anan1的证明。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值