经典树形DP讲解+例题「一本通 5.2 例 1」二叉苹果树讲解

本文详细介绍了树形动态规划在二叉树和一般树结构中的应用,包括邻接矩阵的构建、树的构建过程、询问方法,以及在LOJ10153和LOJ10154例题中的具体实现。重点讨论了剪枝和转移方程的优化策略。
摘要由CSDN通过智能技术生成

树形DP(这里讲解以LOJ 10153以及LOJ 10154

概念

顾名思义,就是在树上进行的动态规划,二叉树用左右儿子数组和邻接矩阵存储,一般的树用vector和邻接矩阵存储。

具体方法

二叉树的方法

邻接矩阵的建立(一般人都会吧)

首先要用到一个很高级的函数:scanf(或者cin)读入两个点的连边和边的权值,分别是x、y和cost,并用邻接数组——map把他们存下来——map[x][y]=z。

代码如下:

for (int i=1;i<n;i++){
	int x,y,z;
	scanf("%d%d%d",&x,&y,&z);
	mp[x][y]=mp[y][x]=z;
}
建树的过程(树形DP中最难的部分)

要先去建立左儿子,还有结点可以放就放到右儿子处,放的时候要用左/右儿子边连上其编号。

代码也不长,在例题里有点“复杂”:

void build(int i){
    for (int i=1;i<=n;i++){
        if (mp[v][i]>=0){                  //要先把mp初始化成-1
            lson[v]=i;
            a[i]=mp[v][i];
            build(i);
            break;
        }
    }
    for (int i=1;i<=n;i++){
        if (mp[v][i]>=0){
            rson[v]=i;
            a[i]=mp[v][i];
            build(i);
            break;
        }
    }
}
询问

最简单了,推出转移方程,在用一个t数组记下来求最大值就可以了。

代码:

int solve(int i,int j){ 
	if (j<=0)return 0;
	if (lson[i]==0&&rson[i]==0)return 0;
	if (f[i][j]>0)return f[i][j];
	for (int k=0;k<=j;k++){
		int t=0;
		if (k!=0)t+=转移方程1;
		if (k!=j)t+=转移方程2;
		f[i][j]=max(f[i][j],t);
	}
	return f[i][j];
}

一般树的方法

一般的树因为已经用vector存好了,所以就可以免去建树的过程,于是,就剩下了一个询问的过程,我们这次的询问和前面的完全不同,转移是有点类似于背包DP的,实际上他就是背包DP,没人告诉我这是背包,我看状态很像背包的……

于是,一大段美丽的代码出炉了:

void solve(int x){
    f[x][0]=0;
    for (int i=0;i<son[x].size();i++){
        int y=son[x][i];
        solve(y);
        for (int j=m;j>=1;j--){
            for (int k=j;k>=1;k--){
                f[x][j]=max(f[x][j],f[x][j-k]+f[y][k]);
            }
        }
    }
    if (x!=0){
        for (int i=m;i>=1;i--){
            f[x][i]=f[x][i-1]+s[x];
        }
    }
}

例题:二叉苹果树

这道题,我们要把树枝上的苹果都压到结点上去,把这个剪线问题改成吃点问题,不仅好理解,代码也好写。

然后我们在建树的时候,可以直接把吃点的过程写上去,这样就省去了在查询时不断吃点,导致状态难找,f数组过大的情况。

所以说,在建树时,要直接把mp[i][v]赋值成-1就可以实现剪枝。

至于转移方程,那就简单了,只要把左子树的答案加上右子树的答案再加上左右子树的苹果树,就可以了。

注意:只有在左子树有的时候才能遍历左子树,同理,要在有右子树的室友才能遍历右子树

代码:

#include<bits/stdc++.h>
using namespace std;
int n,q,lson[105],rson[105],f[105][105],mp[105][105],a[105];
void build(int v){
	for (int i=1;i<=n;i++){
		if (mp[v][i]>=0){
			lson[v]=i;
			a[i]=mp[v][i];
			mp[v][i]=-1;
			mp[i][v]=-1;
			build(i);
			break;
		}
	}
	for (int i=1;i<=n;i++){
		if (mp[v][i]>=0){
			rson[v]=i;
			a[i]=mp[v][i];
			mp[v][i]=-1;
			mp[i][v]=-1;
			build(i);
			break;
		}
	}
}
int solve(int i,int j){ 
	if (j<=0)return 0;
	if (lson[i]==0&&rson[i]==0)return 0;
	if (f[i][j]>0)return f[i][j];
	for (int k=0;k<=j;k++){
		int t=0;
		if (k!=0)t+=solve(lson[i],k-1)+a[lson[i]];
		if (k!=j)t+=solve(rson[i],j-k-1)+a[rson[i]];
		f[i][j]=max(f[i][j],t);
	}
	return f[i][j];
}
int main(){
	scanf("%d%d",&n,&q);
	for (int i=1;i<=n;i++){
		for (int j=1;j<=n;j++){
			mp[i][j]=-1;
		}
	}
	for (int i=1;i<n;i++){
		int x,y,z;
		scanf("%d%d%d",&x,&y,&z);
		mp[x][y]=mp[y][x]=z;
	}
	build(1);
	printf("%d\n",solve(1,q));
	return 0;
}

如有错误,请发至评论区,我会仔细看并更改博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值