原题链接:LOJ 10154
看这篇博客之前,先要看一下这篇博客的前半部分(一般树的食用方法)。
思路
先来一句废话:一节课,要么是一个没有先修课的课,要么就是有先修课的课
既然如此,我们可以把每节课看成结点,由于每个节点的父亲个数只能有一个,所以我们把每节课的先修课当成结点的父亲结点,这样把输入编成树后,就会发现这变成了一个森林结构,每棵树的根结点都是没有先修课的课,然而,为了我们方便树形DP,我们要再建立一个结点——0号结点,当作每个无先修课课程的先修课,也就是说,我们用一个0号结点连接起所有树的根结点,变成一个有n条边,n+1个结点的树,这是,树形DP就好做了,直接上代码!
#include<bits/stdc++.h>
using namespace std;
vector<int>son[305];
int n,m,s[305],f[305][305];
void solve(int x){
f[x][0]=0;
for (int i=0;i<son[x].size();i++){
int y=son[x][i];
solve(y);
for (int j=m;j>=1;j--){
for (int k=j;k>=1;k--){
f[x][j]=max(f[x][j],f[x][j-k]+f[y][k]);
}
}
}
if (x!=0){
for (int i=m;i>=1;i--){
f[x][i]=f[x][i-1]+s[x];
}
}
}
int main(){
int x;
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++){
scanf("%d%d",&x,&s[i]);
son[x].push_back(i);
}
memset(f,-1,sizeof(f));
solve(0);
printf("%d\n",f[0][m]);
return 0;
}