1 论文情况
本文为基于记忆库的异常检测典型方法,在SPADE等模型的基础上改进实现了当时最好的效果,SPADE的论文详解请见主页。本文发布于CVPR2022,论文地址为论文,代码仓库地址为仓库,代码已开源。
2 Introduction
当时异常检测的方法主要集中在单分类方法上,工业异常检测依赖于建模正常数据的分布,比如自编码方法和GANs。最近也有一些方法比如SPADE利用在ImageNet上训练的分类特征无适应迁移到异常检测,实现了较强的异常检测和定位功能,这些方法利用了深度特征的多尺度特性,实现了测试样本和正常样本之间的匹配。异常分割往往由高像素的特征实现,而图像级的异常检测则依赖于更高维更抽象的特征,因此受到少量可提取的高维特征影响。
本文针对上述问题,构建了PatchCore网络,具有一下三个优点:① 推理时,最大化地使用正常信息,②减少和ImageNet种类之间的偏差,③ 保留高推理速度。一般当单个图像块异常时整个图像则被判为异常,因此PatchCore使用了中水平的特征块,以此保留高像素的同时能获取充足的空间上下文信息,另外PatchCore还引入了贪婪的中心采样算法以此减少内存冗余,提高推理速度。最终可以发现仅使用少部分的正常样本就可以匹敌SOTA方法,证明了其样本高效性,下面将具体介绍本文的方法。
3 Method
PatchCore主要由三个部分组成:Locally aware patch features,Coreset-reduced patch-