PatchCore:Towards Total Recall in Industrial Anomaly Detection,基于记忆库的工业异常检测典型方法

1 论文情况

        本文为基于记忆库的异常检测典型方法,在SPADE等模型的基础上改进实现了当时最好的效果,SPADE的论文详解请见主页。本文发布于CVPR2022,论文地址为论文,代码仓库地址为仓库,代码已开源。

2 Introduction

        当时异常检测的方法主要集中在单分类方法上,工业异常检测依赖于建模正常数据的分布,比如自编码方法和GANs。最近也有一些方法比如SPADE利用在ImageNet上训练的分类特征无适应迁移到异常检测,实现了较强的异常检测和定位功能,这些方法利用了深度特征的多尺度特性,实现了测试样本和正常样本之间的匹配。异常分割往往由高像素的特征实现,而图像级的异常检测则依赖于更高维更抽象的特征,因此受到少量可提取的高维特征影响。

        本文针对上述问题,构建了PatchCore网络,具有一下三个优点:① 推理时,最大化地使用正常信息,②减少和ImageNet种类之间的偏差,③ 保留高推理速度。一般当单个图像块异常时整个图像则被判为异常,因此PatchCore使用了中水平的特征块,以此保留高像素的同时能获取充足的空间上下文信息,另外PatchCore还引入了贪婪的中心采样算法以此减少内存冗余,提高推理速度。最终可以发现仅使用少部分的正常样本就可以匹敌SOTA方法,证明了其样本高效性,下面将具体介绍本文的方法。

3 Method

        PatchCore主要由三个部分组成:Locally aware patch features,Coreset-reduced patch-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值