一、项目概述
项目名称:Gaussian Splatting SLAM
作者:
Hidenobu Matsuki(等同贡献)
Riku Murai(等同贡献)
Paul H.J. Kelly
Andrew J. Davison
会议:CVPR 2024(Highlight)
项目简介:该软件实现了在 CVPR'24 论文中提出的密集 SLAM 系统,首次仅基于 3D 高斯溅射(Gaussian Splatting)的单目 SLAM,也支持立体/RGB-D 输入。
二、开始使用
1、安装
克隆代码仓库(递归克隆以包含子模块):
git clone https://github.com/muskie82/MonoGS.git --recursive
cd MonoGS
设置环境:
conda env create -f environment.yml
conda activate MonoGS
根据你的设置,可能需要在
environment.yml
中更改 pytorch/cudatoolkit 的依赖版本,具体可参考 Previous PyTorch Versions。
测试设置:
Ubuntu 20.04:
pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6
Ubuntu 18.04:
pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3
可能由于网络的原因或其他,创建环境一直不成功,所以我手动配置了一下环境。。。
1. 创建 Conda 环境
首先,创建一个名为 `MonoGS` 的 Conda 环境:
conda create -n MonoGS python=3.7.13
2. 激活环境
激活新创建的环境:
conda activate MonoGS
3. 添加一些通道
根据 `environment.yml` 文件,添加所需的通道:
conda config --add channels pytorch
conda config --add channels conda-forge
conda config --add channels defaults
4. 安装 Conda 包
安装 `environment.yml` 文件中列出的 Conda 包:
conda install cudatoolkit=11.6 plyfile=0.8.1 pytorch=1.12.1 torchaudio=0.12.1 torchvision=0.13.1 tqdm pip=22.3.1
5. 安装额外的 Python 包
安装 `environment.yml` 文件中通过 `pip` 列出的 Python 包。首先,确保 `pip` 是最新版本:
pip install --upgrade pip
然后,安装所有通过 `pip` 安装的包:
pip install submodules/simple-knn submodules/diff-gaussian-rasterization opencv-python==4.8.1.78 munch trimesh evo==1.11.0 open3d==0.17.0 torchmetrics imgviz PyOpenGL