自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(42)
  • 收藏
  • 关注

原创 安裝包遇到的報錯以及解決方案

安裝包遇到的報錯以及解決方案可在admin后台使用ckeditor富文本编辑器编辑内容,另页面更加丰富,同时该富文本编辑器也可用于form类。這是遇到的一些裝庫時的報錯,假如有遇到別的再補充。是一个通用的,易用的标签系统,可以轻松地给任何模型打标签,并能很方便的对标签进行管理。关联库的问题,虽然大多数这样的都会有module未安装的提示,但也会不提示的情况。:它负责将数据库表管理为树结构的细节,并提供用于处理模型实例树的工具。:用于解决网站身份验证,用户的注册登录及账户管理,以及第三方。

2023-01-12 17:25:07 311

原创 記錄centos8 升級Python3.6到Python3.9以及可能遇到的問題

Centos8-默认的Python、python2版本为2.7,python3版本為3.6,不符合项目的需求。现在升级到3.9。在Linux中紅色是壓縮文件;白色文件是一般性文件,如文本文件,配置文件,源码文件。 编译:make实际就是编译源代码,按照上一步生成makefile文件进行编译,并生成执行文件。在 Linux环境下使用 GNU 的 make工具能够比较容易的构建一个属于你自己的工程,整个工程的编译只需要一个命令就可以完成编译、连接以至于最后的执行。不过这需要我们投入一些时间去完成一

2023-01-11 10:55:28 278

原创 Python中sort和sorted

如果你需要改变原列表,就说明原列表不需要保留,使用改变原列表的顺序排序函数sort()可以节省Python运行空间,因为是在原列表直接进行改变。而如果要保留原列表,就使用sorted(),这个函数会生成一个新列表,虽然占用了空间,但这是保留原列表所必须的代价。从代码中可以看出sort()和sorted()这两个函数调用的方式就不同,sort()的调用是列表后面加小数点的方式调用,而且顺序排序无需参数,sorted()的调用方式则是将需要顺序排序的列表作为参数放进函数里面进行调用。按字符串中的數字大小排序。

2023-01-05 17:27:11 139

原创 ModuleNotFoundError: No module named ‘sklearn‘和更換下載源

ModuleNotFoundError: No module named 'sklearn',如果嫌太慢怎麽使用下載源在Mac/Linux系统下:配置文件位置在 ~/.pip/pip.conf如果是新安装的就没有这个文件,需要自己创建.pip目录:win环境pip的配置文件在C:\Users\xxx\AppData\Roaming\pip\pip.ini里面(主要也是看你python安裝在哪),可以打开此文件(没有就自己创建一个)直接修改,同样以清华源为例:

2022-12-26 17:57:29 341 3

原创 机器学习之数据分离与混淆矩阵

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容之数据分离与混淆矩阵。前面我们讲过的实例基本流程都是这样的:数据载入→数据可视化与预处理→模型创建→全数据用于模型训练→模型评估按照这个流程的前提是我们要有新数据来作为测试数据供我们使用,那么如果我们没有新数据用于模型评估表现怎么办呢?这时就需要用到数据分离了。简单来说数据分离就是对全数据进行数据分离,部分数据用来训练,部分数据用于新数据的结果预测。一般就是二八分還是三七分吧通常来说分为3

2022-12-08 01:13:03 723

原创 机器学习數據降維之主成分分析(PCA)

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容之主成分分析(PCA)数据降维又称维数约简,就是降低数据的维度。其方法有很多种,从不同角度入手可以有不同的分类,主要分类方法有:根据数据的特性可以划分为线性降维和非线性降维,根据是否考虑和利用数据的监督信息可以划分为无监督降维、有监督降维和半监督降维,根据保持数据的结构可以分为全局保持降维、局部保持降维和全局与局部保持一致降维等。需要根据特定的问题选择合适的数据降维方法。数据降维一方面可以解

2022-12-05 01:07:10 897 1

原创 机器学习之过拟合和欠拟合

随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容之过拟合和欠拟合。对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树等特征挖掘十分重要,尤其是具有强表达能力的特征,往往可以抵过大量的弱表达能力的特征。特征的数量往往并非重点,质量才是,总之强特最重要。能否挖掘出强特,还在于对数据本身以及具体

2022-12-04 19:13:55 974

原创 机器学习之异常检测

随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容之異常檢測。在数据挖掘中,异常检测(英语:anomaly detection)对不匹配预期模式或数据集中其他项目的项目、事件或观测值的识别。 通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。

2022-11-18 21:27:25 445

原创 机器学习之決策樹

随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容之決策樹。决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。

2022-11-17 22:16:09 593

原创 机器学习之KNN算法

随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。KNN可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一,注意KNN算法是有监督学习中的分类算法,它看起来和另一个机器学习算法Kmeans有点像(Kmeans是无监督学习算法),但却是有本质区别的。最明顯的區別就是他是需要標簽的KNN的全称是K Nearest Neighbors,意思是K个最近的邻居,从这个名字我们就能看出一些KNN算法的蛛丝马迹了。

2022-11-16 17:58:46 644

原创 机器学习之聚类:Kmeans实战

随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习中無監督學習的基础内容。机器学习的一种方法,没有给定事先标记过的训练示例,自动对输入的数据进行分类或分群。

2022-11-16 02:06:36 642

原创 机器学习之逻辑回归:芯片质量预测

在上一篇文章中用逻辑回归方法解决了一个考试预测问题,这次我们依然用逻辑回归方法来解决一个芯片质量预测问题,但本次实战和上一次有所不同,本次实战中运用了以函数的方式求解边界曲线并且描绘出完整的决策边界曲线。

2022-11-15 18:28:51 642

原创 机器学习之綫性回归实战:單因子和多因子房价预测

機器學習是一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、演算法複雜度理論等多門學科。專門研究電腦怎樣模擬或實現人類的學習行為,以獲取新的知識或技能,重新組織已有的知識結構使之不斷改善自身的性能。它是人工智慧的核心,是使電腦具有智能的根本途徑。它的應用已遍及人工智慧的各個分支,如專家系統、自動推理、自然語言理解、模式識別、電腦視覺、智能機器人等領域。其中尤其典型的是專家系統中的知識獲取瓶頸問題,人們一直在努力試圖採用機器學習的方法加以剋服。模型(model):模型在未进行训练前,其可能的参数是多个甚

2022-11-15 02:53:35 663

原创 机器学习之逻辑回归实战:考试通过

logistic邏輯回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有 w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w‘x+b作为因变量,即y =w‘x+b,而logistic回归则通过函数L将w‘x+b对应一个隐状态p,p =L(w‘x+b),然后根据p 与1-p的大小决定因变量的值。如果L是logistic函数,就是logistic回归,如果L是多项式函数就是多项式回归。

2022-11-14 22:24:28 536

原创 数据库系统概论(第七章 并发控制 第二部分)

数据库系统概论(第七章 并发控制 第二部分)

2022-11-14 01:25:48 529

原创 数据库系统概论(第七章 并发控制 第一部分)

数据库系统概论(第七章 并发控制 第一部分)

2022-11-14 01:23:30 549

原创 数据库系统概论(第六章 数据库恢复技术 第二部分)

数据库系统概论(第六章 数据库恢复技术 第二部分)

2022-11-14 01:20:51 557

原创 数据库系统概论(第六章 数据库恢复技术 第一部分)

数据库系统概论(第六章 数据库恢复技术 第一部分)

2022-11-14 01:13:58 587

原创 数据库系统概论(第五章 数据库完整性)

数据库系统概论(第五章 数据库完整性)

2022-11-14 01:03:36 515

原创 数据库系统概论(第四章 数据库安全性)

数据库系统概论(第四章 数据库安全性)

2022-11-14 00:36:58 553

原创 数据库系统概论(第三章 关系数据库标准语言SQL 第一部分)

数据库系统概论(第三章 关系数据库标准语言SQL 第一部分)

2022-11-14 00:12:24 544

原创 数据库系统概论(第二章 关系数据库)

關係數據庫

2022-11-13 15:02:43 552

原创 数据库系统概论(第一章 绪论)

数据库系统概论(第一章 绪论)

2022-11-12 23:33:40 591

原创 mysql修改数据库与级别_数据库MySQL查看和修改事务隔离级别的实例讲解

事务的隔离级别分为:未提交读(read uncommitted)、已提交读(read committed)、可重复读(repeatable read)、串行化(serializable)。Repeatable Read这是MySQL的默认事务隔离级别,它确保同一事务的多个实例在并发读取数据时,会看到同样的数据行。不过理论上,这会导致另一个棘手的问题:幻读 (Phantom Read)。简单的说,幻读指当用户读取某一范围的数据行时,另一个事务又在该范围内插入了新行,当用户再读取该

2022-09-25 00:37:03 3211

原创 基于python數據分析的疫情数据可视化系统

基于python 爬虫的疫情数据可视化系统以上就是今天要讲的内容,本文仅仅简单介绍了request和echarts的使用,而echarts提供了大量能使我们快速便捷地处理数据的函数和方法可以參考官方文檔使用畫出各種不同的圖。

2022-09-22 01:20:18 4847

原创 Django 迁移错误 Cannot add foreign key constraint,字段类型自动变成Bigint

今天在数据迁移的时候,一直报错 Cannot add foreign key constraint。

2022-09-20 03:31:13 3064

原创 Django 使用定时任务

Windows 系统进行 Django 开发工作,然后原来使用的django-crontab插件没办法在Windows系统上面进行定时任务。因此又想了其他方式来实现定时任务。下面就来说说这些方案的优缺点。

2022-09-19 22:13:28 3530

原创 python 頁面靜態化

1.为什么要做页面静态化减少数据库查询次数。提升页面响应效率。2.什么是页面静态化将动态渲染生成的页面结果保存成html文件,放到静态文件服务器中。用户直接去静态服务器,访问处理好的静态html文件。3.页面静态化注意点用户相关数据不能静态化:用户名、购物车等不能静态化。动态变化的数据不能静态化:热销排行、新品推荐、分页排序数据等等。不能静态化的数据处理:可以在用户得到页面后,在页面中向后端发送Ajax请求获取相关数据。直接使用模板渲染出来。其他合理的处理方式等等。

2022-09-19 21:32:56 3131

原创 django APScheduler

APScheduler的全称是Advanced Python Scheduler。它是一个轻量级的 Python 定时任务调度框架。APScheduler 支持三种调度任务:固定时间间隔,固定时间点(日期),Linux 下的 Crontab命令。同时,它还支持异步执行、后台执行调度任务。

2022-09-19 21:16:27 3611 2

原创 Haystack

Haystack 是Django中对接搜索引擎的框架,搭建了用户和搜索引擎之间的沟通桥梁。我们在Django中可以通过使用 Haystack 来调用 Elasticsearch 搜索引擎。Haystack 可以在不修改代码的情况下使用不同的搜索后端(比如 Elasticsearch 、 Whoosh 、Solr 等等)

2022-09-18 01:01:56 3067

原创 celery异步——生产者消费者

Celery是一个简单,灵活,可靠的分布式系统,用于处理大量消息,同时为操作提供维护此类系统所需的工具。它是一个任务队列,专注于实时处理,同时还支持任务调度。celery 的优点:简单:celery的 配置和使用还是比较简单的, 非常容易使用和维护和不需要配置文件高可用:当任务执行失败或执行过程中发生连接中断,celery 会自动尝试重新执行任务如果连接丢失或发生故障,worker和client 将自动重试,并且一些代理通过主/主或主/副本复制方式支持HA。

2022-09-15 15:40:37 3174 1

原创 FastDFS

FastDFS1.定义FastDFS(Fast Distributed file system)用c语言编写的一款开源的轻量级分布式文件系统2.功能:文件存储,文件访问(文件上传,文件下载)文件同步等,解决了大容量存储和负载均衡的问题3.优点:有利于冗余备份,负载均衡,线性扩容,高可用,高性能实现了软RAID(redundant array of independent disks独立磁盘冗余阵列)4.缺点通过API下载,存在单点的性能瓶颈不支持断点续传,对大文件将是噩梦5.应用场景。

2022-09-15 15:16:10 3034

原创 Cannot find reference ‘url’ in ‘init.py’

Cannot find reference ‘url’ in ‘init.py’

2022-07-26 16:42:03 3537

原创 python坦克大战

《坦克大战》,1985年由日本开发商南梦宫(Namco)开发,是第一款可以双打的红白机游戏。当时使用的还是小霸王。如何用python实现坦克大战

2022-06-29 21:33:13 4455

原创 python打包exe

python写的程序要怎么办才能使没有没有python环境的人使用。pyinstaller是打包exe的方法以及使用可能问题

2022-06-21 23:30:06 3665 1

原创 pygame捕获键盘事件的两种方式

pygame捕获键盘事件的两种方式方式1:在pygame中使用pygame.event.get()方法捕获键盘事件,使用这个方式捕获的键盘事件必须要是按下再弹起才算一次。示例示例:eventList = pygame.event.get()# 2.对事件进行判断处理(1. 点击关闭按钮 2.按下键盘上的某个键)for event in eventList: # 判断event.type 是否QUIT if event.type == pygame.QUIT: p

2022-05-24 20:25:21 5893 1

原创 python TypeError: missing 1 required positional argument:‘self‘

问题描述Python 调用类的函数时报错如下:TypeError: startGame() missing 1 required positional argument: ‘self’原因分析:MainGame是个类,startGame() 是其中的方法,不能直接这样调用,需要先将类实例化MainGame.startGame()注意:上面是创建一个匿名对象解决方案:创建对象代码改为:MainGame().startGame()代码原理:MainGame是 class 也

2022-05-23 21:39:26 5297

原创 协程——asyncio.wait()警告

问题描述使用协程弹出警告:DeprecationWarning: The explicit passing of coroutine objects to asyncio.wait() is deprecated since Python 3.8, and scheduled for removal in Python 3.11. await asyncio.wait(tasks)原因分析:从警告信息中得出在python3.8后直接把协程对象传给asyncio.wait()是不行的,必须封装

2022-04-21 18:09:46 5636

原创 python筛选符合分辨率图片遇到的问题

问题背景:用python获取图片分辨率问题描述导入PIL库报错,安装不了报错信息:ERROR: Could not find a version that satisfies the requirement PIL (from versions: none)ERROR: No matching distribution found for PIL '原因分析:由报错信息知道找不到这个版本,一开始想去清华园找这个版本,然后百度得知PIL较多用于2.7版本的Python中,到python3

2022-04-16 15:05:57 3933 2

原创 数据可视化——flask简单使用

文章目录前言一、Flask是什么?- **常用扩展包**- **基本模式**二、Flask基础使用1.引入库2.路由解析新建项目默认代码如下:修改Debug模式通过访问路径,获取用户的参数返回给用户渲染后的网页文件向页面传参表单总结前言爬取到的数据不能直观的知道得到了什么数据,能用什么方法将数据分析并进行可视化?提示:以下是本篇文章正文内容,下面案例可供参考一、Flask是什么?Flask是一个使用 Python 编写的轻量级 Web 应用框架。其 WSGI 工具箱采用 Werkzeug ,模

2022-04-14 13:19:54 4213

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除