前言
本篇PriorityQueue优先级队列的介绍其底层是堆,关于堆的认识,使用优先级队列能解决的一些问题;如有错误,请在评论区指正,让我们一起交流,共同进步!
本文开始
1.介绍优先级队列
优先级队列:它的底层是一种堆的数据结构,它以顺序结构存储,是一个一维数组;
既然底层是堆,就来了解一下!
2. 认识堆
认识堆的特点:有两种堆类型
① 小根堆:父节点小于左右孩子节点,不能保证左右孩子谁大; =》使用优先级队列就创建了小根堆,想要创建大根堆需要自己给比较器(根据自定义规则比较,用于节点交换);
② 大根堆:父节点大于左右孩子节点,不能保证左右孩子谁大;
③ 堆还是完全二叉树:可以使用顺序存储;非完全二叉树存储,为了还原二叉树还需要存储空节点,浪费空间 - 》堆为什么可以顺序存储的原有;
代码实现小根堆:
向下调整(父节点向下走):从最后一颗子树开始,父节点与子节点比较大小是否交换,直到不用比较就确定了小根堆;
/**
* 建堆的时间复杂度:
* O(n)
*/
//求出最后一个父节点,因为是顺序存储的-1就是下一颗树的父节点
public void createHeap(int[] array) {
for (int parent = (usedSize - 1) / 2; parent >= 0; parent--) {
//获取最后一个子树父节点,usedSize记录数组中存储的个数
//传递父节点和孩子节点最大的范围
shiftDown(parent,usedSize);
}
}
/**
* root 是每棵子树的根节点的下标
* len 是每棵子树调整结束的结束条件
* 向下调整的时间复杂度:O(logn) ;最坏换树的高度
*/
private void shiftDown(int root,int len) {
//向下调整需要每个子树的父节点
int child = 2 * root + 1;//求出左孩子节点位置
while (child < len) {
//获取孩子节点最大值下标
//防止右孩子下标越界,需要判断
if(child + 1 < len && elem[child] < elem[child + 1]) {
child++;
}
//比较父子节点大小
if(elem[child] > elem[root]) {
swap(elem,child,root);
//调整父子节点下标位置
child = root;
root = 2 * child + 1;//再次获取左孩子节点下标
}else {
//父节点大于子节点直接跳出
break;
}
}
}
//交换函数
private void swap(int[] elem, int child, int root) {
int tmp = elem[child];
elem[child] = elem[root];
elem[root] = tmp;
}
代码实现大根堆
向上调整(孩子节点向上走):
private void shiftUp(int child) {
//求出它的父节点下标
int parent = (child - 1) / 2;
//child==0最后一个节点不用比较
while (child > 0) {
//比较父子节点大小
if(elem[child] > elem[parent]) {
//交换
swap(elem,child,parent);
//移动父子节点下标,可能不止移动一次(子节点向上)
child = parent;
parent = (child - 1) / 2;//获得更上一级的父节点下标
}else {
//父节点小于子节点直接跳出
break;
}
}
}
3. 实现优先级队列
了解大根堆,小根堆就可以实现优先级队列!
代码实现优先级队列(以大根堆为例):
public class PriorityQueue {
public int[] elem;
public int usedSize;
public PriorityQueue() {
int[] elem = new int[10];
}
//交换函数
private void swap(int[] elem, int child, int root) {
int tmp = elem[child];
elem[child] = elem[root];
elem[root] = tmp;
}
/**
* 入队:仍然要保持是大根堆
*/
public void push(int val) {
//插入
if(isFull()) {
//扩增
Arrays.copyOf(elem,2*elem.length);
return;
}
//没满就在最后位置插入
elem[usedSize] = val;
//向上调整即可
shiftUp(usedSize);
usedSize++;
}
public boolean isFull() {
return usedSize == elem.length;
}
/**
* 出队删除:每次删除的都是优先级高的元素
* 仍然要保持是大根堆
*/
public void pollHeap() {
if(isEmpty()) {
return;
}
//交换首尾
int end = usedSize - 1;
swap(elem,0,end);
//向下调整范围需要-1,因为删除了一个元素
shiftDown(0,--usedSize);
}
//判断是否为空
public boolean isEmpty() {
return usedSize == 0;
}
/**
* 获取堆顶元素
*/
public int peekHeap() {
if(isEmpty()) {
return -1;
}
return elem[0];
}
}
3.1 了解优先级队列的构造方法:
① 无参构造:默认大小11
② 有一个整形参数的构造:
③ 两个参数(整形,比较规则)的构造:
3.2 使用优先级队列解决问题:
1.top-k问题:
例如取前k个最小 / 最大的值;
2.堆排序
①升序(1,2,3…):大根堆
使用原因:大根堆堆顶元素一定最大的,将堆顶元素与堆末尾元素交换,再向下调整,重新得到大根堆;这样每次都会把最大的放到最后,再次到堆顶的时候,堆顶后面的元素已经有序了,依次弹出即可;
②降序(4,3,2…):小根堆
使用原有:小根堆堆顶元素一定最小的,将堆顶元素与堆末尾元素交换,再向下调整,重新得小根堆;这样每次都会把最小的放到最后,再次到堆顶的时候,堆顶后面的元素已经降序有序了,依次弹出即可;
总结
✨✨✨各位读友,本篇分享到内容如果对你有帮助给个👍赞鼓励一下吧!!
感谢每一位一起走到这的伙伴,我们可以一起交流进步!!!一起加油吧!!!