第五章kettle基本操作(数据一致性处理)

本文介绍了如何使用Kettle工具进行数据一致性处理,特别是在Personnel_Information表中实现弱一致性。通过训练GENDER字段的健康预测模型,将字符串特征转化为数值特征。步骤包括数据准备、配置表输入、值映射以及插入/更新操作,最终更新到Personnel_Information_New表中。
摘要由CSDN通过智能技术生成

通过Kettle工具,使用弱一致性对数据表Personnel_Information中的数据进行一致性处理,即利用数据表Personnel_Information中的字段GENDER中的值训练出一个健康值预测模型,用于将原始数据中的字符串特征转化为模型可识别的数字特征。

数据准备

数据库中有一张名为Personnel_Information的数据表

打开Kett

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值