一.函数依赖集的闭包
1.定义:在关系模式R(U,F)中,U是R的属性全集,F是R上的一组函数依赖。设X、Y是U的子集,对于关系模式R的任一关系r,如果r满足F,则r满足XY,那么称F逻辑蕴涵XY,或称函数依赖XY可由F导出。
所有被F逻辑蕴涵的函数依赖的全集称为F的闭包,。
2.对关系模式R(U,F),应用Armstrong公理系统系统计算F+的过程:
步骤1:初始,=F。
步骤2:对F+中的每个函数依赖f,在f上应用自反性和增广性,将结果加入中;对中的一对函数依赖f1和f2,如果f1和f2可以使用传递律结合起来,则将结果加入中。
步骤3:重复步骤2,直到不再增大为止。
二.属性集闭
1.定义:设有关系模式R(U,F),U是R的属性全集,F是R上的一组函数依赖集,X是U的一个子集(XU)。用函数依赖推理规则可从F推出的函数依赖XA中所有A 的集合,称为属性集X关于F的闭包,记为(或)。即:
={A|XA能够由F根据Armstrong公理导出}
2.对关系模式R(U,F),求属性集X相对于函数依赖集F的闭包d的算法如下:
步骤1:初始,=X。
步骤2:如果F中有某个函数依赖YZ满足Y。则=Z。
步骤3:重复步骤2,直到不再增大为止。
3.求属性集闭包的另一个用途是:如果属性集X的闭包包含了R中的全部属性,则X为R的一个候选键。
三.候选键的求解方法
1.对于给定的关系模式R(A1,A2,.....,An)和函数依赖集F,现将R的属性分为如下四类:
(1)L类:仅出现在函数依赖左边的属性。
(2)R类:仅出现在函数依赖右边的属性。
(3)N类:在函数依赖的左部和右部均不出现的属性。
(4)LR类:在函数依赖的左部和右部均出现的属性。
2.对R中的属性X,可有以下结论:
(1)若X是L类属性,则X一定包含在关系模式R的任何一个候选键;若包含了R的全部属性,则X为关系模式R的唯一候选键。
(2)若X是R类属性,则X不包含在关系模式R的任何一个候选键中。
(3)若X是N类属性,则X一定包含在关系模式R的任何一个候选键中。
(4)若若X是LR类属性,则X可能包含在关系模式R的任何一个候选键中。
3.做题步骤:
(1)先找L,N类属性。
(2)=;
(3)LR
(4)=
(5)候选键。