线性代数-可解性和解的结构(通俗易懂

可解性与解的结构

在线性方程组 Ax = b 中,解的可解性和解的结构取决于矩阵 A 的性质以及增广矩阵 [A | b] 的行简化阶梯形式。我们将从以下几个方面来讨论可解性和解的结构:

  1. 可解性:方程组 Ax = b 是否有解,通常取决于矩阵 A 的秩(rank)和增广矩阵 [A | b] 的秩。对于齐次方程 Ax = 0,我们还需要考虑零空间的维度。
  2. 解的结构:方程组 Ax = b 如果有解,则解的结构可能是唯一解、无穷多解或者没有解。解的结构与主变量、自由变量、矩阵的秩等因素有关。

1. 可解性

对于齐次方程 Ax = 0

对于齐次方程 Ax = 0,可解性总是成立,因为零向量 x = 0 总是方程的解。因此,齐次方程一定有解,它的解的结构由 A 的秩和自由变量决定。

  • 如果矩阵 A 是 m × n 矩阵,其秩 rank(A) 是 r,零空间的维度是 n - r。也就是说,齐次方程 Ax = 0n - r 个自由变量,因此其解空间的维度为 n - r。解的结构是 n - r 维的子空间。
  • 如果 rank(A) = n,即 A 的列向量是线性无关的,则解仅包含零解 x = 0
  • 如果 rank(A) < n,则零空间有非零解,且解的空间是一个 n - r 维的子空间,表示无穷多解。
对于非齐次方程 Ax = b

对于非齐次方程 Ax = b,可解性取决于增广矩阵 [A | b] 的秩与矩阵 A 的秩的关系。

  • 如果 rank(A) = rank([A | b]),则方程有解。
  • 如果 rank(A) < rank([A | b]),则方程无解。
例子 1:无解的情况

考虑增广矩阵 [A | b]
A = ( 1 2 3 2 4 6 1 1 1 ) , b = ( 1 1 1 ) A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} A= 121241361 ,b= 111
增广矩阵为:
[ A ∣ b ] = ( 1 2 3 1 2 4 6 1 1 1 1 1 ) [A | b] = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 6 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} [Ab]= 121241361111

进行高斯消元得到:
( 1 2 3 1 0 0 0 − 1 0 − 1 − 2 0 ) \begin{pmatrix} 1 & 2 & 3 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & -1 & -2 & 0 \end{pmatrix} 100201302110
可以看到,第二行变成了 0 = -1,这显然是一个矛盾的方程,因此该方程组无解。

例子 2:有解的情况

考虑增广矩阵 [A | b]
A = ( 1 2 3 2 4 6 1 1 1 ) , b = ( 1 0 1 ) A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} A= 121241361 ,b= 101
增广矩阵为:
[ A ∣ b ] = ( 1 2 3 1 2 4 6 0 1 1 1 1 ) [A | b] = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 6 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} [Ab]= 121241361101

经过高斯消元得到:
( 1 2 3 1 0 0 0 − 2 0 − 1 − 2 0 ) \begin{pmatrix} 1 & 2 & 3 & 1 \\ 0 & 0 & 0 & -2 \\ 0 & -1 & -2 & 0 \end{pmatrix} 100201302120
这时增广矩阵的秩 rank(A) = rank([A | b]) = 2,方程组有解,且解的结构由自由变量决定。

2. 解的结构

唯一解

当矩阵 A 的列满秩时,即 rank(A) = n(矩阵 A 的列向量线性无关,且方程组的个数与未知数个数相同),方程 Ax = b 的解是唯一的。

  • 齐次方程 Ax = 0 只有零解。
  • 非齐次方程 Ax = b 也只有一个解。
无穷多解

当矩阵 A 的列不满秩时,即 rank(A) < n,零空间的维度大于零,方程 Ax = b 的解将是无穷多解。

  • 齐次方程 Ax = 0 的解空间的维度是 n - rank(A),即无穷多解。
  • 非齐次方程 Ax = b 的解空间也是无穷多解,其解可以表示为齐次方程 Ax = 0 的解加上一个特解。
无解

当矩阵 A 的秩与增广矩阵 [A | b] 的秩不相等时,方程组 Ax = b 无解。

例如,如果 rank(A) < rank([A | b]),则增广矩阵中存在不一致的方程,导致方程组无解。

3. 解的结构分析:主变量和自由变量

主变量与自由变量
  • 主变量:在高斯消元法中,经过行变换后,矩阵中每一行的第一个非零元素对应的未知数为主变量。主变量是与方程解的结构直接相关的变量,它们的值由方程组中的其他变量确定。

  • 自由变量:自由变量是方程组中的任意变量,它们在矩阵的行简化过程中没有被“固定”,通常它们是列数大于秩时所对应的变量。在齐次方程组 Ax = 0 中,自由变量决定了解空间的维度。

解的通式与特解
  • 对于齐次方程 Ax = 0,解是一个由自由变量张成的子空间,解的结构是无穷多解,解的个数等于自由变量的个数。

  • 对于非齐次方程 Ax = b,如果有解,其解可以表示为齐次方程的解加上一个特解:
    x = x h + x p \mathbf{x} = \mathbf{x_h} + \mathbf{x_p} x=xh+xp
    其中 xₕ 是齐次方程的解,xₚ 是非齐次方程的特解。

总结

  • 可解性:通过增广矩阵的秩来判断方程组是否有解。对于齐次方程 Ax = 0,总是有解;对于非齐次方程 Ax = b,有解的条件是 rank(A) = rank([A | b])
  • 解的结构:解的结构可以是唯一解、无穷多解或无解。无穷多解通常出现在矩阵 A 的列不满秩时,且解空间的维度由自由变量的个数决定。
  • 主变量与自由变量:通过高斯消元法确定主变量与自由变量的关系,进而分析解的结构。主变量是方程组解的核心,决定了解空间的方向;自由变量则决定了解空间的自由度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值