可解性与解的结构
在线性方程组 Ax = b 中,解的可解性和解的结构取决于矩阵 A 的性质以及增广矩阵 [A | b] 的行简化阶梯形式。我们将从以下几个方面来讨论可解性和解的结构:
- 可解性:方程组 Ax = b 是否有解,通常取决于矩阵 A 的秩(rank)和增广矩阵 [A | b] 的秩。对于齐次方程 Ax = 0,我们还需要考虑零空间的维度。
- 解的结构:方程组 Ax = b 如果有解,则解的结构可能是唯一解、无穷多解或者没有解。解的结构与主变量、自由变量、矩阵的秩等因素有关。
1. 可解性
对于齐次方程 Ax = 0
对于齐次方程 Ax = 0,可解性总是成立,因为零向量 x = 0 总是方程的解。因此,齐次方程一定有解,它的解的结构由 A 的秩和自由变量决定。
- 如果矩阵 A 是 m × n 矩阵,其秩 rank(A) 是 r,零空间的维度是 n - r。也就是说,齐次方程 Ax = 0 有 n - r 个自由变量,因此其解空间的维度为 n - r。解的结构是 n - r 维的子空间。
- 如果 rank(A) = n,即 A 的列向量是线性无关的,则解仅包含零解 x = 0。
- 如果 rank(A) < n,则零空间有非零解,且解的空间是一个 n - r 维的子空间,表示无穷多解。
对于非齐次方程 Ax = b
对于非齐次方程 Ax = b,可解性取决于增广矩阵 [A | b] 的秩与矩阵 A 的秩的关系。
- 如果 rank(A) = rank([A | b]),则方程有解。
- 如果 rank(A) < rank([A | b]),则方程无解。
例子 1:无解的情况
考虑增广矩阵 [A | b]:
A
=
(
1
2
3
2
4
6
1
1
1
)
,
b
=
(
1
1
1
)
A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}
A=
121241361
,b=
111
增广矩阵为:
[
A
∣
b
]
=
(
1
2
3
1
2
4
6
1
1
1
1
1
)
[A | b] = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 6 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}
[A∣b]=
121241361111
进行高斯消元得到:
(
1
2
3
1
0
0
0
−
1
0
−
1
−
2
0
)
\begin{pmatrix} 1 & 2 & 3 & 1 \\ 0 & 0 & 0 & -1 \\ 0 & -1 & -2 & 0 \end{pmatrix}
10020−130−21−10
可以看到,第二行变成了 0 = -1,这显然是一个矛盾的方程,因此该方程组无解。
例子 2:有解的情况
考虑增广矩阵 [A | b]:
A
=
(
1
2
3
2
4
6
1
1
1
)
,
b
=
(
1
0
1
)
A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}
A=
121241361
,b=
101
增广矩阵为:
[
A
∣
b
]
=
(
1
2
3
1
2
4
6
0
1
1
1
1
)
[A | b] = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 6 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}
[A∣b]=
121241361101
经过高斯消元得到:
(
1
2
3
1
0
0
0
−
2
0
−
1
−
2
0
)
\begin{pmatrix} 1 & 2 & 3 & 1 \\ 0 & 0 & 0 & -2 \\ 0 & -1 & -2 & 0 \end{pmatrix}
10020−130−21−20
这时增广矩阵的秩 rank(A) = rank([A | b]) = 2,方程组有解,且解的结构由自由变量决定。
2. 解的结构
唯一解
当矩阵 A 的列满秩时,即 rank(A) = n(矩阵 A 的列向量线性无关,且方程组的个数与未知数个数相同),方程 Ax = b 的解是唯一的。
- 齐次方程 Ax = 0 只有零解。
- 非齐次方程 Ax = b 也只有一个解。
无穷多解
当矩阵 A 的列不满秩时,即 rank(A) < n,零空间的维度大于零,方程 Ax = b 的解将是无穷多解。
- 齐次方程 Ax = 0 的解空间的维度是 n - rank(A),即无穷多解。
- 非齐次方程 Ax = b 的解空间也是无穷多解,其解可以表示为齐次方程 Ax = 0 的解加上一个特解。
无解
当矩阵 A 的秩与增广矩阵 [A | b] 的秩不相等时,方程组 Ax = b 无解。
例如,如果 rank(A) < rank([A | b]),则增广矩阵中存在不一致的方程,导致方程组无解。
3. 解的结构分析:主变量和自由变量
主变量与自由变量
-
主变量:在高斯消元法中,经过行变换后,矩阵中每一行的第一个非零元素对应的未知数为主变量。主变量是与方程解的结构直接相关的变量,它们的值由方程组中的其他变量确定。
-
自由变量:自由变量是方程组中的任意变量,它们在矩阵的行简化过程中没有被“固定”,通常它们是列数大于秩时所对应的变量。在齐次方程组 Ax = 0 中,自由变量决定了解空间的维度。
解的通式与特解
-
对于齐次方程 Ax = 0,解是一个由自由变量张成的子空间,解的结构是无穷多解,解的个数等于自由变量的个数。
-
对于非齐次方程 Ax = b,如果有解,其解可以表示为齐次方程的解加上一个特解:
x = x h + x p \mathbf{x} = \mathbf{x_h} + \mathbf{x_p} x=xh+xp
其中 xₕ 是齐次方程的解,xₚ 是非齐次方程的特解。
总结
- 可解性:通过增广矩阵的秩来判断方程组是否有解。对于齐次方程 Ax = 0,总是有解;对于非齐次方程 Ax = b,有解的条件是 rank(A) = rank([A | b])。
- 解的结构:解的结构可以是唯一解、无穷多解或无解。无穷多解通常出现在矩阵 A 的列不满秩时,且解空间的维度由自由变量的个数决定。
- 主变量与自由变量:通过高斯消元法确定主变量与自由变量的关系,进而分析解的结构。主变量是方程组解的核心,决定了解空间的方向;自由变量则决定了解空间的自由度。