机器学习数学基础-极值和最值

极值和最值

极值最值是数学中关于函数变化的重要概念,它们描述了函数在某些点附近或在整个定义域内的“最大”或“最小”行为。理解极值和最值对优化问题、函数分析、物理建模等领域有重要的应用。

1. 极值(Local Extrema)

极值是指函数在某个区间内的某一点取得的局部最大值或最小值。

(1) 局部最大值(Local Maximum)

一个函数在某点 ( x = c ) 取得局部最大值,意味着存在一个包含 ( c ) 的小区间,使得在这个区间内所有的点 ( x ) 都满足:

f ( x ) ≤ f ( c ) f(x) \leq f(c) f(x)f(c)

也就是说,( f© ) 是在这个区间内的最大值。

(2) 局部最小值(Local Minimum)

一个函数在某点 ( x = c ) 取得局部最小值,意味着存在一个包含 ( c ) 的小区间,使得在这个区间内所有的点 ( x ) 都满足:

f ( x ) ≥ f ( c ) f(x) \geq f(c) f(x)f(c)

也就是说,( f© ) 是在这个区间内的最小值。

(3) 定义

如果函数 ( f(x) ) 在点 ( c ) 的某个邻域内取得极大或极小值,那么点 ( c ) 称为极值点。如果 ( f(x) ) 在该点取得最大或最小值,则称其为极值

2. 最值(Global Extrema)

最值是指函数在整个定义域内的最大值或最小值。

(1) 全局最大值(Global Maximum)

函数 ( f(x) ) 在其定义域 ( D ) 上取得全局最大值,意味着对于所有 ( x \in D ),都有:

f ( x ) ≤ f ( c ) f(x) \leq f(c) f(x)f(c)

其中 ( c ) 是使得 ( f© ) 取得全局最大值的点。

(2) 全局最小值(Global Minimum)

函数 ( f(x) ) 在其定义域 ( D ) 上取得全局最小值,意味着对于所有 ( x \in D ),都有:

f ( x ) ≥ f ( c ) f(x) \geq f(c) f(x)f(c)

其中 ( c ) 是使得 ( f© ) 取得全局最小值的点。

(3) 定义

如果 ( f(x) ) 在其定义域 ( D ) 上某一点 ( c ) 取得的函数值是整个定义域内所有函数值中的最大值或最小值,则称该点为最值点。该点对应的函数值称为最值

3. 极值与最值的关系

  • 极值是局部的,即只在某一小范围内(一个小区间)相对于其他点取最大或最小值。
  • 最值是全局的,即在整个定义域内相对于所有其他点取最大或最小值。

一个函数可能有多个极值点,但可能只有一个最值。例如,函数 ( f(x) = \sin(x) ) 在区间 ( [0, 2\pi] ) 内有多个极值点,但它的全局最大值和最小值分别是 ( 1 ) 和 ( -1 )。

4. 如何求极值和最值

(1) 极值点的判定(通过导数)

要找函数的极值,通常可以通过求导数来进行分析:

  • 一阶导数法:如果 ( f’(x) = 0 ) 或 ( f’(x) ) 不存在,则可能存在极值点。此时,( x ) 是候选的极值点。
  • 二阶导数法:进一步地,通过二阶导数 ( f’'(x) ) 来判断该点是极大值、极小值还是拐点:
    • 如果 ( f’'(x) > 0 ),则函数在该点处有局部最小值。
    • 如果 ( f’'(x) < 0 ),则函数在该点处有局部最大值。
    • 如果 ( f’'(x) = 0 ),则无法确定,可能是拐点,需要更高阶导数或其他方法来分析。
(2) 求最值

要找到函数的最值,通常有两种情况需要考虑:

  1. 在闭区间上的最值:如果函数在闭区间 ( [a, b] ) 上定义,并且是连续的,则根据极值定理,函数在该区间内必定有最大值和最小值。这些最值可能出现在区间的端点或者区间内的极值点。

  2. 在开区间上的最值:如果函数没有明确的定义域,可能需要通过其他方法(如极限等)来找到函数的全局最大值或最小值。

5. 极值和最值的例题

例题1:求函数 ( f(x) = x^3 - 3x ) 在区间 ( [-2, 2] ) 上的极值和最值。

解答

  1. 求导:( f’(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x - 1)(x + 1) )。

  2. 求解 ( f’(x) = 0 ):解得 ( x = 1 ) 和 ( x = -1 )。

  3. 检查端点 ( x = -2 ) 和 ( x = 2 ) 的函数值:

    • ( f(-2) = (-2)^3 - 3(-2) = -8 + 6 = -2 )
    • ( f(2) = 2^3 - 3(2) = 8 - 6 = 2 )
    • ( f(1) = 1^3 - 3(1) = 1 - 3 = -2 )
    • ( f(-1) = (-1)^3 - 3(-1) = -1 + 3 = 2 )
  4. 比较各点的值:

    • 最大值 ( f(2) = 2 )
    • 最小值 ( f(1) = -2 )

所以,函数在区间 ( [-2, 2] ) 上的最大值是 ( 2 ),最小值是 ( -2 )。

例题2:求函数 ( f(x) = e{-x2} ) 的极值和最值。

解答

  1. 求导:( f’(x) = -2xe{-x2} )。

  2. 求解 ( f’(x) = 0 ):得到 ( x = 0 )。

  3. 检查极值:( f’‘(x) = (-2 + 4x2)e{-x^2} )。在 ( x = 0 ) 处,( f’'(0) = -2 ),所以 ( x = 0 ) 是局部最大值。

  4. 最值:函数 ( f(x) = e{-x2} ) 在 ( x = 0 ) 处取得全局最大值 ( f(0) = 1 ),并且当 ( x \to \pm \infty ) 时,( f(x) \to 0 )。

所以,全局最大值是 ( 1 ),最小值趋向于 ( 0 )(但永远不会等于 0)。

6. 总结

  • 极值是指函数在某一点的局部最大或最小值。
  • 最值是指函数在整个定义域内的最大或最小值。
  • 求极值通常通过一阶导数为零来找到极值点,然后通过二阶导数判定极值的类型。
  • 求最值则需要考虑函数的定义域,可能涉及到端点的值和极值点的比较。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值