机器学习数学基础-不定积分

不定积分

不定积分是积分学中的一个重要概念,它是原函数的求解过程。简而言之,不定积分是通过给定的函数,反推出其原函数的过程。

1. 不定积分的定义

不定积分也称为反导数,表示一个函数的原函数的集合。具体来说,如果函数 ( F(x) ) 的导数是 ( f(x) ),即

F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x)

那么,函数 ( F(x) ) 就是 ( f(x) ) 的原函数,记作:

∫ f ( x )   d x = F ( x ) + C \int f(x) \, dx = F(x) + C f(x)dx=F(x)+C

其中:

  • ( \int f(x) , dx ) 表示对 ( f(x) ) 进行不定积分。
  • ( F(x) ) 是原函数。
  • ( C ) 是常数,称为积分常数。这是因为导数的计算中,常数项被消除了,所以不定积分会增加一个任意常数。

不定积分的结果是一个函数,而不是一个数值。

2. 不定积分的基本性质
  • 线性性质

    1. ( \int [f(x) + g(x)] , dx = \int f(x) , dx + \int g(x) , dx )
    2. ( \int c \cdot f(x) , dx = c \cdot \int f(x) , dx ),其中 ( c ) 是常数。
  • 常数函数的积分

    对常数 ( c ) 的积分是:
    ∫ c   d x = c ⋅ x + C \int c \, dx = c \cdot x + C cdx=cx+C

  • 幂函数的积分

    对幂函数 ( x^n )(其中 ( n \neq -1 ))的积分是:
    ∫ x n   d x = x n + 1 n + 1 + C \int x^n \, dx = \frac{x^{n+1}}{n+1} + C xndx=n+1xn+1+C

3. 常见的不定积分公式
  • ( \int x^n , dx = \frac{x^{n+1}}{n+1} + C ), 其中 ( n \neq -1 )
  • ( \int e^x , dx = e^x + C )
  • ( \int \sin(x) , dx = -\cos(x) + C )
  • ( \int \cos(x) , dx = \sin(x) + C )
  • ( \int \sec^2(x) , dx = \tan(x) + C )
  • ( \int \frac{1}{x} , dx = \ln|x| + C ) (( x \neq 0 ))
  • ( \int a^x , dx = \frac{a^x}{\ln(a)} + C ) (( a > 0, a \neq 1 ))
  • ( \int \ln(x) , dx = x\ln(x) - x + C )
4. 不定积分的几何意义

不定积分的几何意义是求曲线下方的面积,但由于它是“不定”积分,因此它表示的是一个函数族,每一个函数在其对应的原函数上都有不同的常数 ( C )。当积分常数 ( C = 0 ) 时,表示原函数曲线的一个特定位置。

5. 不定积分的应用
  • 求原函数:从已知的导数出发,反推出原函数。
  • 计算面积:通过不定积分,可以计算某些几何区域的面积(例如,计算某个函数在区间上的定积分)。
  • 物理问题中的应用:不定积分广泛应用于物理学中,如位移、速度和加速度之间的关系等。
6. 常见的不定积分例题
例题1:计算 ( \int 3x^2 , dx )

解答
使用幂函数的积分公式:
∫ 3 x 2   d x = 3 ⋅ x 3 3 + C = x 3 + C \int 3x^2 \, dx = 3 \cdot \frac{x^{3}}{3} + C = x^3 + C 3x2dx=33x3+C=x3+C

例题2:计算 ( \int e^x , dx )

解答
根据公式,( e^x ) 的积分是:
∫ e x   d x = e x + C \int e^x \, dx = e^x + C exdx=ex+C

例题3:计算 ( \int \sin(x) , dx )

解答
根据已知公式,( \sin(x) ) 的积分是:
∫ sin ⁡ ( x )   d x = − cos ⁡ ( x ) + C \int \sin(x) \, dx = -\cos(x) + C sin(x)dx=cos(x)+C

例题4:计算 ( \int \frac{1}{x} , dx )

解答
根据公式,( \frac{1}{x} ) 的积分是:
∫ 1 x   d x = ln ⁡ ∣ x ∣ + C \int \frac{1}{x} \, dx = \ln|x| + C x1dx=lnx+C

例题5:计算 ( \int (4x^3 + 2x^2 - 5x + 6) , dx )

解答
分项积分:
∫ ( 4 x 3 + 2 x 2 − 5 x + 6 )   d x = ∫ 4 x 3   d x + ∫ 2 x 2   d x − ∫ 5 x   d x + ∫ 6   d x \int (4x^3 + 2x^2 - 5x + 6) \, dx = \int 4x^3 \, dx + \int 2x^2 \, dx - \int 5x \, dx + \int 6 \, dx (4x3+2x25x+6)dx=4x3dx+2x2dx5xdx+6dx

分别计算每一项的积分:

  • ( \int 4x^3 , dx = 4 \cdot \frac{x^4}{4} = x^4 )
  • ( \int 2x^2 , dx = 2 \cdot \frac{x^3}{3} = \frac{2x^3}{3} )
  • ( \int 5x , dx = \frac{5x^2}{2} )
  • ( \int 6 , dx = 6x )

所以,原积分为:
∫ ( 4 x 3 + 2 x 2 − 5 x + 6 )   d x = x 4 + 2 x 3 3 − 5 x 2 2 + 6 x + C \int (4x^3 + 2x^2 - 5x + 6) \, dx = x^4 + \frac{2x^3}{3} - \frac{5x^2}{2} + 6x + C (4x3+2x25x+6)dx=x4+32x325x2+6x+C

例题6:计算 ( \int x e{x2} , dx )

解答
可以使用换元法来解决。设 ( u = x^2 ),则 ( du = 2x , dx ),所以 ( x , dx = \frac{du}{2} )。

因此,原积分变为:
∫ x e x 2   d x = 1 2 ∫ e u   d u \int x e^{x^2} \, dx = \frac{1}{2} \int e^u \, du xex2dx=21eudu

由于 ( \int e^u , du = e^u ),所以:
1 2 ∫ e u   d u = 1 2 e u + C = 1 2 e x 2 + C \frac{1}{2} \int e^u \, du = \frac{1}{2} e^u + C = \frac{1}{2} e^{x^2} + C 21eudu=21eu+C=21ex2+C

7. 总结
  • 不定积分是求函数的原函数的过程,即反导数。
  • 不定积分的结果是一个函数,包含一个常数 ( C ),因为导数过程中常数项会被去掉。
  • 不定积分的计算涉及基本的积分公式和技巧,如换元法、分项积分法等。
  • 不定积分广泛应用于物理学、几何学、工程学等领域,尤其是与定积分相结合,用于计算面积、体积等。

通过不定积分的掌握,你可以更好地理解和解决一些实际问题,并为进一步学习定积分等其他积分技巧打下基础。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值