二重积分是多重积分中的一种,用于计算在二维区域上的函数的总量,通常用于求解平面区域内某个函数的面积、体积或质量等量。它是单变量积分的扩展,处理的是二维区域上的积分问题。
1. 二重积分的定义
假设 ( f(x, y) ) 是定义在平面区域 ( D ) 上的一个函数,区域 ( D ) 可以是一个有限的、闭合的区域。二重积分表示为:
∬ D f ( x , y ) d A \iint_D f(x, y) \, dA ∬Df(x,y)dA
这里:
- ( f(x, y) ) 是被积函数,表示在点 ( (x, y) ) 处的函数值。
- ( dA ) 是微小区域的面积元素,通常写作 ( dx , dy ) 或 ( dy , dx ),表示对 ( x ) 和 ( y ) 进行的积分。
具体而言,二重积分可以看作是对平面区域 ( D ) 内的每个小矩形区域的积分,计算该小区域内的函数值之和,并通过极限过程得到总和。
2. 二重积分的计算过程
二重积分的计算可以通过如下步骤进行:
1. 设置积分区域
首先,要明确积分区域 ( D )。该区域可以通过对 ( x ) 和 ( y ) 的范围进行描述,通常分为两种情况:
- 矩形区域:如果区域 ( D ) 是矩形区域,则可以简单地设置积分的上下限。
- 非矩形区域:如果区域 ( D ) 的边界是由函数定义的,可能需要分步计算或使用极坐标来进行处理。
2. 写出二重积分的表达式
根据积分区域 ( D ) 和被积函数 ( f(x, y) ),写出二重积分的表达式,通常是对 ( x ) 和 ( y ) 进行逐步积分。
3. 逐步积分
根据所选择的积分顺序(首先对 ( x ) 积分或对 ( y ) 积分),计算二重积分。通常可以采用以下两种形式:
- 先对 ( x ) 积分,再对 ( y ) 积分:
∬ D f ( x , y ) d A = ∫ y 1 y 2 ( ∫ x 1 x 2 f ( x , y ) d x ) d y \iint_D f(x, y) \, dA = \int_{y_1}^{y_2} \left( \int_{x_1}^{x_2} f(x, y) \, dx \right) dy ∬Df(x,y)dA=∫y1y2(∫x1x2f(x,y)dx)dy
- 先对 ( y ) 积分,再对 ( x ) 积分:
∬ D f ( x , y ) d A = ∫ x 1 x 2 ( ∫ y 1 y 2 f ( x , y ) d y ) d x \iint_D f(x, y) \, dA = \int_{x_1}^{x_2} \left( \int_{y_1}^{y_2} f(x, y) \, dy \right) dx ∬Df(x,y)dA=∫x1x2(∫y1y2f(x,y)dy)dx
3. 二重积分的几何意义
几何上,二重积分表示函数在区域 ( D ) 上的累积量。常见的几何应用包括:
-
计算平面区域的面积:如果 ( f(x, y) = 1 ),则二重积分计算的是区域 ( D ) 的面积。
Area ( D ) = ∬ D 1 d A \text{Area}(D) = \iint_D 1 \, dA Area(D)=∬D1dA
-
计算体积:如果 ( f(x, y) ) 代表一个平面上某个点的高度,二重积分可以用来计算该区域下方的体积。
Volume = ∬ D f ( x , y ) d A \text{Volume} = \iint_D f(x, y) \, dA Volume=∬Df(x,y)dA
-
质量计算:如果 ( f(x, y) ) 代表一个区域内物体的密度,二重积分可以计算该区域内物体的总质量。
Mass = ∬ D ρ ( x , y ) d A \text{Mass} = \iint_D \rho(x, y) \, dA Mass=∬Dρ(x,y)dA
4. 二重积分的性质
二重积分具有一些重要的性质:
1. 线性性质
二重积分具有线性性质,即对两个函数的和和常数倍进行二重积分时,可以分开积分或提取常数:
∬ D ( f ( x , y ) + g ( x , y ) ) d A = ∬ D f ( x , y ) d A + ∬ D g ( x , y ) d A \iint_D (f(x, y) + g(x, y)) \, dA = \iint_D f(x, y) \, dA + \iint_D g(x, y) \, dA ∬D(f(x,y)+g(x,y))dA=∬Df(x,y)dA+∬Dg(x,y)dA
∬ D c f ( x , y ) d A = c ∬ D f ( x , y ) d A \iint_D c f(x, y) \, dA = c \iint_D f(x, y) \, dA ∬Dcf(x,y)dA=c∬Df(x,y)dA
其中 ( c ) 是常数。
2. 交换积分顺序
如果区域 ( D ) 是一个矩形区域,并且被积函数 ( f(x, y) ) 在该区域上是连续的,那么可以交换积分顺序:
∬ D f ( x , y ) d A = ∫ x 1 x 2 ( ∫ y 1 y 2 f ( x , y ) d y ) d x = ∫ y 1 y 2 ( ∫ x 1 x 2 f ( x , y ) d x ) d y \iint_D f(x, y) \, dA = \int_{x_1}^{x_2} \left( \int_{y_1}^{y_2} f(x, y) \, dy \right) dx = \int_{y_1}^{y_2} \left( \int_{x_1}^{x_2} f(x, y) \, dx \right) dy ∬Df(x,y)dA=∫x1x2(∫y1y2f(x,y)dy)dx=∫y1y2(∫x1x2f(x,y)dx)dy
3. 区域分割
如果区域 ( D ) 被分割成多个子区域 ( D_1, D_2, \dots, D_n ),且每个子区域的积分都存在,那么可以将二重积分分割为多个子区域的积分:
∬ D f ( x , y ) d A = ∑ i = 1 n ∬ D i f ( x , y ) d A \iint_D f(x, y) \, dA = \sum_{i=1}^{n} \iint_{D_i} f(x, y) \, dA ∬Df(x,y)dA=i=1∑n∬Dif(x,y)dA
4. 极坐标下的二重积分
当积分区域 ( D ) 是一个圆形或其他以原点为中心的区域时,使用极坐标来计算二重积分通常更加方便。在极坐标下,二重积分的形式为:
∬ D f ( x , y ) d x d y = ∫ θ 1 θ 2 ( ∫ r 1 r 2 f ( r , θ ) r d r ) d θ \iint_D f(x, y) \, dx \, dy = \int_{\theta_1}^{\theta_2} \left( \int_{r_1}^{r_2} f(r, \theta) \, r \, dr \right) d\theta ∬Df(x,y)dxdy=∫θ1θ2(∫r1r2f(r,θ)rdr)dθ
这里,( r ) 和 ( \theta ) 分别是极坐标中的径向和角度坐标。
5. 例题
例题 1:计算矩形区域的面积
考虑矩形区域 ( D = [0, 2] \times [0, 3] ),计算该区域的面积。
使用二重积分来计算:
Area ( D ) = ∬ D 1 d A = ∫ 0 3 ( ∫ 0 2 1 d x ) d y \text{Area}(D) = \iint_D 1 \, dA = \int_0^3 \left( \int_0^2 1 \, dx \right) dy Area(D)=∬D1dA=∫03(∫021dx)dy
首先对 ( x ) 积分:
∫ 0 2 1 d x = 2 \int_0^2 1 \, dx = 2 ∫021dx=2
然后对 ( y ) 积分:
∫ 0 3 2 d y = 6 \int_0^3 2 \, dy = 6 ∫032dy=6
因此,矩形区域 ( D ) 的面积为 6。
6. 总结
二重积分是计算在平面区域上的函数总量的工具,具有广泛的应用,如计算面积、体积、质量等。通过明确积分区域,利用一阶和二阶积分计算,可以方便地解决实际问题。二重积分的性质如线性性、交换积分顺序和极坐标形式等,为其应用提供了很大的灵活性。