机器学习数学基础-二重积分的定义和性质

二重积分是多重积分中的一种,用于计算在二维区域上的函数的总量,通常用于求解平面区域内某个函数的面积、体积或质量等量。它是单变量积分的扩展,处理的是二维区域上的积分问题。

1. 二重积分的定义

假设 ( f(x, y) ) 是定义在平面区域 ( D ) 上的一个函数,区域 ( D ) 可以是一个有限的、闭合的区域。二重积分表示为:

∬ D f ( x , y )   d A \iint_D f(x, y) \, dA Df(x,y)dA

这里:

  • ( f(x, y) ) 是被积函数,表示在点 ( (x, y) ) 处的函数值。
  • ( dA ) 是微小区域的面积元素,通常写作 ( dx , dy ) 或 ( dy , dx ),表示对 ( x ) 和 ( y ) 进行的积分。

具体而言,二重积分可以看作是对平面区域 ( D ) 内的每个小矩形区域的积分,计算该小区域内的函数值之和,并通过极限过程得到总和。

2. 二重积分的计算过程

二重积分的计算可以通过如下步骤进行:

1. 设置积分区域

首先,要明确积分区域 ( D )。该区域可以通过对 ( x ) 和 ( y ) 的范围进行描述,通常分为两种情况:

  • 矩形区域:如果区域 ( D ) 是矩形区域,则可以简单地设置积分的上下限。
  • 非矩形区域:如果区域 ( D ) 的边界是由函数定义的,可能需要分步计算或使用极坐标来进行处理。
2. 写出二重积分的表达式

根据积分区域 ( D ) 和被积函数 ( f(x, y) ),写出二重积分的表达式,通常是对 ( x ) 和 ( y ) 进行逐步积分。

3. 逐步积分

根据所选择的积分顺序(首先对 ( x ) 积分或对 ( y ) 积分),计算二重积分。通常可以采用以下两种形式:

  • 先对 ( x ) 积分,再对 ( y ) 积分

∬ D f ( x , y )   d A = ∫ y 1 y 2 ( ∫ x 1 x 2 f ( x , y )   d x ) d y \iint_D f(x, y) \, dA = \int_{y_1}^{y_2} \left( \int_{x_1}^{x_2} f(x, y) \, dx \right) dy Df(x,y)dA=y1y2(x1x2f(x,y)dx)dy

  • 先对 ( y ) 积分,再对 ( x ) 积分

∬ D f ( x , y )   d A = ∫ x 1 x 2 ( ∫ y 1 y 2 f ( x , y )   d y ) d x \iint_D f(x, y) \, dA = \int_{x_1}^{x_2} \left( \int_{y_1}^{y_2} f(x, y) \, dy \right) dx Df(x,y)dA=x1x2(y1y2f(x,y)dy)dx

3. 二重积分的几何意义

几何上,二重积分表示函数在区域 ( D ) 上的累积量。常见的几何应用包括:

  • 计算平面区域的面积:如果 ( f(x, y) = 1 ),则二重积分计算的是区域 ( D ) 的面积。

    Area ( D ) = ∬ D 1   d A \text{Area}(D) = \iint_D 1 \, dA Area(D)=D1dA

  • 计算体积:如果 ( f(x, y) ) 代表一个平面上某个点的高度,二重积分可以用来计算该区域下方的体积。

    Volume = ∬ D f ( x , y )   d A \text{Volume} = \iint_D f(x, y) \, dA Volume=Df(x,y)dA

  • 质量计算:如果 ( f(x, y) ) 代表一个区域内物体的密度,二重积分可以计算该区域内物体的总质量。

    Mass = ∬ D ρ ( x , y )   d A \text{Mass} = \iint_D \rho(x, y) \, dA Mass=Dρ(x,y)dA

4. 二重积分的性质

二重积分具有一些重要的性质:

1. 线性性质

二重积分具有线性性质,即对两个函数的和和常数倍进行二重积分时,可以分开积分或提取常数:

∬ D ( f ( x , y ) + g ( x , y ) )   d A = ∬ D f ( x , y )   d A + ∬ D g ( x , y )   d A \iint_D (f(x, y) + g(x, y)) \, dA = \iint_D f(x, y) \, dA + \iint_D g(x, y) \, dA D(f(x,y)+g(x,y))dA=Df(x,y)dA+Dg(x,y)dA

∬ D c f ( x , y )   d A = c ∬ D f ( x , y )   d A \iint_D c f(x, y) \, dA = c \iint_D f(x, y) \, dA Dcf(x,y)dA=cDf(x,y)dA

其中 ( c ) 是常数。

2. 交换积分顺序

如果区域 ( D ) 是一个矩形区域,并且被积函数 ( f(x, y) ) 在该区域上是连续的,那么可以交换积分顺序:

∬ D f ( x , y )   d A = ∫ x 1 x 2 ( ∫ y 1 y 2 f ( x , y )   d y ) d x = ∫ y 1 y 2 ( ∫ x 1 x 2 f ( x , y )   d x ) d y \iint_D f(x, y) \, dA = \int_{x_1}^{x_2} \left( \int_{y_1}^{y_2} f(x, y) \, dy \right) dx = \int_{y_1}^{y_2} \left( \int_{x_1}^{x_2} f(x, y) \, dx \right) dy Df(x,y)dA=x1x2(y1y2f(x,y)dy)dx=y1y2(x1x2f(x,y)dx)dy

3. 区域分割

如果区域 ( D ) 被分割成多个子区域 ( D_1, D_2, \dots, D_n ),且每个子区域的积分都存在,那么可以将二重积分分割为多个子区域的积分:

∬ D f ( x , y )   d A = ∑ i = 1 n ∬ D i f ( x , y )   d A \iint_D f(x, y) \, dA = \sum_{i=1}^{n} \iint_{D_i} f(x, y) \, dA Df(x,y)dA=i=1nDif(x,y)dA

4. 极坐标下的二重积分

当积分区域 ( D ) 是一个圆形或其他以原点为中心的区域时,使用极坐标来计算二重积分通常更加方便。在极坐标下,二重积分的形式为:

∬ D f ( x , y )   d x   d y = ∫ θ 1 θ 2 ( ∫ r 1 r 2 f ( r , θ )   r   d r ) d θ \iint_D f(x, y) \, dx \, dy = \int_{\theta_1}^{\theta_2} \left( \int_{r_1}^{r_2} f(r, \theta) \, r \, dr \right) d\theta Df(x,y)dxdy=θ1θ2(r1r2f(r,θ)rdr)dθ

这里,( r ) 和 ( \theta ) 分别是极坐标中的径向和角度坐标。

5. 例题

例题 1:计算矩形区域的面积

考虑矩形区域 ( D = [0, 2] \times [0, 3] ),计算该区域的面积。

使用二重积分来计算:

Area ( D ) = ∬ D 1   d A = ∫ 0 3 ( ∫ 0 2 1   d x ) d y \text{Area}(D) = \iint_D 1 \, dA = \int_0^3 \left( \int_0^2 1 \, dx \right) dy Area(D)=D1dA=03(021dx)dy

首先对 ( x ) 积分:

∫ 0 2 1   d x = 2 \int_0^2 1 \, dx = 2 021dx=2

然后对 ( y ) 积分:

∫ 0 3 2   d y = 6 \int_0^3 2 \, dy = 6 032dy=6

因此,矩形区域 ( D ) 的面积为 6。

6. 总结

二重积分是计算在平面区域上的函数总量的工具,具有广泛的应用,如计算面积、体积、质量等。通过明确积分区域,利用一阶和二阶积分计算,可以方便地解决实际问题。二重积分的性质如线性性、交换积分顺序和极坐标形式等,为其应用提供了很大的灵活性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值