机器学习数学基础-正项级数

正项级数是指其所有项均为正数的无穷级数,即对于级数 ( \sum_{n=1}^{\infty} a_n ),其中 ( a_n > 0 ) 对于所有 ( n ) 都成立。

正项级数是研究无穷级数时的一类特殊情况,因其每一项都是正数,在判断级数的收敛性时有许多独特的性质和方法。

1. 正项级数的定义

设 ( a_n ) 为一个正数数列(即 ( a_n > 0 ) 对于所有的 ( n ))。则无穷级数:

S = ∑ n = 1 ∞ a n S = \sum_{n=1}^{\infty} a_n S=n=1an

称为正项级数。

正项级数的和是指它的部分和的极限,部分和 ( S_N ) 是前 ( N ) 项的和:

S N = ∑ n = 1 N a n S_N = \sum_{n=1}^{N} a_n SN=n=1Nan

当 ( N \to \infty ) 时,若部分和 ( S_N ) 存在极限 ( S ),则称级数收敛于 ( S ),即:

lim ⁡ N → ∞ S N = S \lim_{N \to \infty} S_N = S NlimSN=S

如果极限不存在或趋于无穷大,则称该级数发散。

2. 正项级数的收敛性判断

对于正项级数,判断其是否收敛是非常重要的。正项级数的收敛性可以通过以下几种常见的方法来判定:

1. 比较判别法

比较判别法是通过将待判定的正项级数与已知收敛或发散的级数进行比较来判断其收敛性。如果对于正项级数 ( \sum_{n=1}^{\infty} a_n ) 和级数 ( \sum_{n=1}^{\infty} b_n ) 存在常数 ( C > 0 ),使得对于足够大的 ( n ),有:

0 ≤ a n ≤ C ⋅ b n 0 \leq a_n \leq C \cdot b_n 0anCbn

且已知 ( \sum_{n=1}^{\infty} b_n ) 收敛,那么 ( \sum_{n=1}^{\infty} a_n ) 也收敛。

如果:

a n ≥ C ⋅ b n ( 且 ∑ n = 1 ∞ b n 发散 ) a_n \geq C \cdot b_n \quad (\text{且} \quad \sum_{n=1}^{\infty} b_n \text{发散}) anCbn(n=1bn发散)

则 ( \sum_{n=1}^{\infty} a_n ) 也发散。

2. 比值判别法

比值判别法通过计算级数项之间的比值来判断级数的收敛性。对于正项级数 ( \sum_{n=1}^{\infty} a_n ),计算:

L = lim ⁡ n → ∞ a n + 1 a n L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} L=nlimanan+1

  • 如果 ( L < 1 ),则级数收敛。
  • 如果 ( L > 1 ),则级数发散。
  • 如果 ( L = 1 ),则无法得出结论,需要用其他方法来进一步判断。
3. 根判别法

根判别法通过计算级数项的 ( n )-次根来判断收敛性。对于正项级数 ( \sum_{n=1}^{\infty} a_n ),计算:

L = lim ⁡ n → ∞ a n n L = \lim_{n \to \infty} \sqrt[n]{a_n} L=nlimnan

  • 如果 ( L < 1 ),则级数收敛。
  • 如果 ( L > 1 ),则级数发散。
  • 如果 ( L = 1 ),则需要使用其他方法进一步判断。
4. 积分判别法

积分判别法是通过将级数的项与某个连续函数的积分进行比较来判断收敛性。对于正项级数 ( \sum_{n=1}^{\infty} a_n ),如果函数 ( f(x) ) 满足:

f ( n ) = a n 且 f ( x )  是单调递减的 f(n) = a_n \quad \text{且} \quad f(x) \text{ 是单调递减的} f(n)=anf(x) 是单调递减的

则级数 ( \sum_{n=1}^{\infty} a_n ) 和积分 ( \int_1^\infty f(x) , dx ) 的收敛性相同。如果积分收敛,则级数收敛;如果积分发散,则级数发散。

3. 正项级数的性质

正项级数有一些重要的性质,其中包括:

1. 单调性

正项级数的部分和是单调递增的。即:

S 1 ≤ S 2 ≤ S 3 ≤ … S_1 \leq S_2 \leq S_3 \leq \dots S1S2S3

这意味着随着我们加入更多的项,部分和是不断增加的,直到达到某个极限(如果级数收敛的话)。

2. 极限性质

如果正项级数收敛,则它的部分和 ( S_N ) 会趋向一个有限的值。而如果正项级数发散,则它的部分和会趋向无穷大。

3. 必要条件

对于正项级数 ( \sum_{n=1}^{\infty} a_n ),如果级数收敛,则其项 ( a_n ) 必须趋向于零:

lim ⁡ n → ∞ a n = 0 \lim_{n \to \infty} a_n = 0 nliman=0

然而,反之并不成立:即使 ( \lim_{n \to \infty} a_n = 0 ),级数也可能发散。这是判断级数是否收敛的必要但不充分条件。

4. 例子

例子 1:几何级数

几何级数是最经典的正项级数之一,形式为:

∑ n = 0 ∞ a r n \sum_{n=0}^{\infty} ar^n n=0arn

其中 ( a ) 是首项,( r ) 是公比。如果 ( |r| < 1 ),则该级数收敛,且其和为:

S = a 1 − r S = \frac{a}{1 - r} S=1ra

如果 ( |r| \geq 1 ),则该级数发散。

例子 2:调和级数

调和级数是形如:

∑ n = 1 ∞ 1 n \sum_{n=1}^{\infty} \frac{1}{n} n=1n1

它是一个发散的级数,尽管项 ( a_n = \frac{1}{n} ) 随着 ( n ) 增大逐渐变小,但级数的和仍然趋向于无穷大。

5. 总结

正项级数是所有项为正数的无穷级数。判断正项级数是否收敛通常依赖于多种判别法,如比较判别法、比值判别法、根判别法和积分判别法等。正项级数的一个重要性质是,它的部分和是单调递增的,且收敛的必要条件是项趋向零。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值