机器学习数学基础-任意项级数

任意项级数是指每一项的符号(正或负)都可能变化的无穷级数,通常表示为:

S = ∑ n = 1 ∞ a n S = \sum_{n=1}^{\infty} a_n S=n=1an

其中,( a_n ) 可以是任意的实数,既可以是正数,也可以是负数。与正项级数不同,任意项级数的项并不满足全为正数的条件,因此它在收敛性和性质上有所不同。对于这种级数,通常需要更加精细的分析方法来判断其收敛性,并且在一些情况下,级数可能会有交错项或其他复杂的行为。

1. 任意项级数的定义

任意项级数是由一列数 ( a_1, a_2, a_3, \dots ) 组成的无穷级数。即级数的每一项 ( a_n ) 可能是正数、负数或零。级数的和是指其部分和的极限。部分和是前 ( N ) 项的和,记作:

S N = ∑ n = 1 N a n S_N = \sum_{n=1}^{N} a_n SN=n=1Nan

若 ( S_N ) 随着 ( N \to \infty ) 有极限存在,即:

lim ⁡ N → ∞ S N = S \lim_{N \to \infty} S_N = S NlimSN=S

则称级数 ( \sum_{n=1}^{\infty} a_n ) 收敛,并且该极限 ( S ) 就是该级数的和。如果极限不存在,或者部分和趋于无穷大,则该级数发散。

2. 任意项级数的收敛性

与正项级数不同,任意项级数的收敛性更加复杂,因为项的符号可以改变。判断任意项级数是否收敛,可以通过以下几种方法:

1. 必要条件

对于任意项级数 ( \sum_{n=1}^{\infty} a_n ),如果该级数收敛,那么其项 ( a_n ) 必须趋向零:

lim ⁡ n → ∞ a n = 0 \lim_{n \to \infty} a_n = 0 nliman=0

但是,反之并不成立:即使 ( a_n \to 0 ),级数也未必收敛。举例来说,调和级数 ( \sum_{n=1}^{\infty} \frac{1}{n} ) 中的项趋向零,但级数是发散的。

2. 交错级数判别法(莱布尼茨判别法)

对于一个交错级数(即项符号交替变化的级数),如果满足以下条件,则级数收敛:

  • ( a_n ) 为正数且递减(即 ( a_n \geq a_{n+1} ) 对于所有 ( n ))。
  • ( \lim_{n \to \infty} a_n = 0 )。

这时,级数的和是有限的。交错级数收敛性通常通过莱布尼茨判别法来判断。

例如,交错调和级数:

∑ n = 1 ∞ ( − 1 ) n + 1 n \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} n=1n(1)n+1

满足 ( \frac{1}{n} ) 递减且趋向零,因此根据莱布尼茨判别法,该级数是收敛的。

3. 绝对收敛与条件收敛

对于任意项级数,如果级数 ( \sum_{n=1}^{\infty} |a_n| ) 收敛,则我们称原级数绝对收敛。绝对收敛是判断级数收敛性的一个强条件。

  • 绝对收敛:如果 ( \sum_{n=1}^{\infty} |a_n| ) 收敛,则级数 ( \sum_{n=1}^{\infty} a_n ) 一定收敛。
  • 条件收敛:如果 ( \sum_{n=1}^{\infty} a_n ) 收敛,但 ( \sum_{n=1}^{\infty} |a_n| ) 发散,则称该级数为条件收敛的。

绝对收敛的级数无论如何排列其项,级数的和都会相同,而条件收敛的级数在重新排列项时,级数的和可能发生变化。

3. 任意项级数的性质

1. 交换项顺序的影响

对于绝对收敛的级数,无论如何交换项的顺序,级数的和都不会改变。也就是说,交换项顺序不会影响和。

但是,对于条件收敛的级数,交换项顺序可能会导致级数的和发生改变。实际上,可以通过重新排列条件收敛级数的项来使其和趋向任何给定的值,或者使级数发散。

2. 部分和的单调性

对于任意项级数,如果级数收敛,则其部分和 ( S_N ) 是有极限的。然而,部分和并不总是单调的,特别是对于条件收敛的级数。

3. 级数的重排

对于条件收敛的级数,重排其项可能会改变其和,甚至可能使级数发散。这种现象由重排级数定理(Riemann rearrangement theorem)给出。

4. 常见的任意项级数

1. 交错级数

交错级数是一类非常重要的任意项级数,其项的符号交替变化。常见的交错级数包括交错调和级数:

∑ n = 1 ∞ ( − 1 ) n + 1 n \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} n=1n(1)n+1

该级数满足莱布尼茨判别法,因此它是收敛的,其和为 ( \ln(2) )。

2. 幂级数

幂级数是关于某个变量 ( x ) 的无穷级数,通常写成:

∑ n = 0 ∞ a n x n \sum_{n=0}^{\infty} a_n x^n n=0anxn

其中 ( a_n ) 是系数,( x ) 是变量。幂级数的收敛性通常由收敛半径来决定,在收敛半径内,幂级数收敛,超出收敛半径则发散。

5. 例子

例子 1:交错调和级数

交错调和级数:

∑ n = 1 ∞ ( − 1 ) n + 1 n \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} n=1n(1)n+1

满足 ( a_n = \frac{1}{n} ) 递减且趋于零,因此根据莱布尼茨判别法,该级数收敛。

例子 2:条件收敛级数

考虑级数:

∑ n = 1 ∞ ( − 1 ) n n \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} n=1n (1)n

这个级数满足条件收敛,因为虽然 ( \frac{1}{\sqrt{n}} ) 随着 ( n ) 增大而趋近于零,但 ( \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} ) 是发散的。因此,这个级数是条件收敛的。

6. 总结

任意项级数是每一项可能具有不同符号的无穷级数。在分析其收敛性时,需要考虑项的符号变化对级数收敛性的影响。常用的判断方法包括必要条件、交错级数判别法、绝对收敛和条件收敛的判断等。对于绝对收敛的级数,项的顺序可以交换,而对于条件收敛的级数,项的重排可能会影响级数的和。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值