深度优先搜索DFS回溯与全排列1(1654. 全部排列问题、1308. 全排列的结果、1358. 素数环、1361. n个数取出r个数排列、1685. n个数的全排列、1439. 素数环2)

深度优先搜索DFS回溯与全排列问题解析

题单地址:题单中心-东方博宜OJ

1654. 全部排列问题

问题描述

输入 n 输出 1…n 个数的全部排列。全部排列中,数字可以重复 。

例如输入 33 ,输出全部排列的结果如下:111、112、113、121、122、123、131、132、133、211、212、213、221、222、223、231、232、233、311、312、313、321、322、323、331、332、333。

输入

一个整数 n(1 < n ≤ 6)。

输出

按照由小到大的顺序输出 1…n 这 n 个数的全部排列情况。

样例

输入

2

输出

11

12

21

22

解析:深搜的本质也是枚举,递归负责纵向遍历,枚举每一位的元素个数,for循环负责横向遍历,枚举区间所有元素,两个方向的枚举可以得到所有组合。

#include <bits/stdc++.h>
using namespace std;

int n, a[10];

void dfs(int k){
	if(k == n){
		for(int i = 0; i < n; i++){
			cout << a[i];
		}
		cout << endl;
		return;
	}
	for(int i = 1; i <= n; i++){
		a[k] = i;
		dfs(k + 1);
	}
}

int main(){
	cin >> n;
	dfs(0);
}

1308. 全排列的结果

问题描述

从键盘读入一个整数 n,请输出 1∼n 中所有整数的全排列,按照由小到大输出结果,每组的 n 个数之间用空格隔开。

全排列的含义:从 n 个不同元素中任取 m(m ≤ n)个元素,按照一定的顺序排列起来,叫做从 n 个不同元素中取出 m 个元素的一个排列。当 m=n 时所有的排列情况叫全排列。

如当 n=3n=3 时,全排列的结果为:

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

输入

一个整数 n(1 ≤ n ≤ 6);

输出

1∼n 中所有数的全排列的结果,按照由小到大输出,每行 n 个数。

样例

输入

3

输出

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

解析:这里每个数字只能使用一次,所以需要使用一个数组记录那些数字被使用过。递归返回后要做回溯,既使用的数字标记为未使用。

#include <bits/stdc++.h>
using namespace std;

int n, a[10], vis[10];

void dfs(int k){
	if(k == n){
		for(int i = 0; i < n; i++){
			cout << a[i] << ' ';
		}
		cout << endl;
		return;
	}
	for(int i = 1; i <= n; i++){
		if(vis[i] == 0){
			vis[i] = 1;
			a[k] = i;
			dfs(k + 1);
			vis[i] = 0;
		}
			
	}
}

int main(){
	cin >> n;
	dfs(0);
}

1358. 素数环

问题描述

从 1∼n 这 n 个数,摆成一个环,要求相邻的两个数的和是素数,按照由小到大请输出所有可能的摆放形式。

比如:n=4,输出形式如下;

1:1 2 3 4
2:1 4 3 2
3:2 1 4 3
4:2 3 4 1
5:3 2 1 4
6:3 4 1 2
7:4 1 2 3
8:4 3 2 1
total:8

比如:n=6,输出形式如下;

1:1 4 3 2 5 6
2:1 6 5 2 3 4
3:2 3 4 1 6 5
4:2 5 6 1 4 3
5:3 2 5 6 1 4
6:3 4 1 6 5 2
7:4 1 6 5 2 3
8:4 3 2 5 6 1
9:5 2 3 4 1 6
10:5 6 1 4 3 2
11:6 1 4 3 2 5
12:6 5 2 3 4 1
total:12

输入

一个整数 n ;(2 ≤ n ≤ 10)

输出

前若干行,每行输出一个素数环的解,最后一行,输出解的总数。

样例

输入

4

输出

1:1 2 3 4
2:1 4 3 2
3:2 1 4 3
4:2 3 4 1
5:3 2 1 4
6:3 4 1 2
7:4 1 2 3
8:4 3 2 1
total:8

解析:和全排列一样,不过在填满 n 个数时,需要判断该数列是否满足素数环。

#include <bits/stdc++.h>
using namespace std;

int n, m = 1, a[15], vis[15];

bool prime(int x){
	if(x < 2)return 0;
	for(int i = 2; i <= sqrt(x); i++){
		if(x % i == 0)return 0;
	}
	return 1;
}

void dfs(int k){
	if(k == n){
		int f = 1;
		for(int i = 0; i < n-1; i++){
			if(!prime(a[i] + a[i+1]))f = 0;
		}
		if(!prime(a[0] + a[n-1]))f = 0;
		if(f){
			cout << m++ << ":";
			for(int i = 0; i < n; i++){
				cout << a[i] << ' ';
			}
			cout << endl;
		}
		return;
	}
	for(int i = 1; i <= n; i++){
		if(vis[i] == 0){
			vis[i] = 1;
			a[k] = i;
			dfs(k + 1);
			vis[i] = 0;
		}
			
	}
}

int main(){
	cin >> n;
	dfs(0);
	cout << "total:" << m-1;
}

1361. n个数取出r个数排列

问题描述

从 1∼n 任意挑出 r 个数进行排列,请从小到大输出所有可能的排列结果。

如:n=5,r=2,则输出结果如下

1 2
1 3
1 4
1 5
2 1
2 3
2 4
2 5
3 1
3 2
3 4
3 5
4 1
4 2
4 3
4 5
5 1
5 2
5 3
5 4

输入

两个整数 n 和 r ( n 和 r 都是 2∼6 之间的整数)

输出

从 1∼n 中取出 r 个数的排列结果!

样例

输入

5 2

输出

1 2

1 3

1 4

1 5

2 1

2 3

2 4

2 5

3 1

3 2

3 4

3 5

4 1

4 2

4 3

4 5

5 1

5 2

5 3

5 4

解析:限定位数的全排列。

#include <bits/stdc++.h>
using namespace std;

int n, r, m = 1, a[15], vis[15];

void dfs(int k){
	if(k == r){
		for(int i = 0; i < r; i++){
			cout << a[i] << ' ';
		}
		cout << endl;
		return;
	}
	for(int i = 1; i <= n; i++){
		if(vis[i] == 0){
			vis[i] = 1;
			a[k] = i;
			dfs(k + 1);
			vis[i] = 0;
		}
	}
}

int main(){
	cin >> n >> r;
	dfs(0);
}

1685. n个数的全排列

问题描述

从键盘读入 n 个整数(每个数都是 1∼9 之间的数),输出这 n 个整数的全排列(数字不能重复)。

输入

第 1 行输入一个整数 n。(1 ≤ n ≤ 8)

第 2 行输入 n 个不相等的整数。(每个数在 [1,9] 的范围内)

输出

输出若干行,每行包括 n 个数据,表示一种排列方案,所有的排列按字典码从小到大排序输出

样例

输入

3

4 6 2

输出

2 4 6

2 6 4

4 2 6

4 6 2

6 2 4

6 4 2

解析:由于排列的数是给定的,且要按字典序输出,所有要将从大到小排序,再进行全排序。

#include <bits/stdc++.h>
using namespace std;

int n, r, a[15], vis[15], b[15];

void dfs(int k){
	if(k == n){
		for(int i = 0; i < n; i++){
			cout << a[i] << ' ';
		}
		cout << endl;
		return;
	}
	for(int i = 1; i <= n; i++){
		if(vis[i] == 0){
			vis[i] = 1;
			a[k] = b[i];
			dfs(k + 1);
			vis[i] = 0;
		}
			
	}
}

int main(){
	cin >> n;
	for(int i = 1; i <= n; i++)cin >> b[i];
	sort(b + 1, b + n + 1);
	dfs(0);
}

1439. 素数环2

问题描述

将 1∼n 这 n 个数字首尾相连,形成一个圆环,要求圆环上任意两个相邻的数字之和都是一个素数,请编程输出符合条件的素数环。

输入

输入数据仅一行,包含一个正整数 n(n ≤ 20)。

输出

输出数据最多包括 10 行,每行由 n 个整数组成,表示前十个符合条件的素数环(不足十个时全部输出)。

所有素数环第一个元素必须是 1 ,且按照从小到大的顺序排列。

样例

输入

6

输出

1 4 3 2 5 6

1 6 5 2 3 4

解析:由于第 1 位必须为 1,所以偶数位必须为偶数,奇数位必须为奇数。

#include <bits/stdc++.h>
using namespace std;

int n, m = 1, a[25], vis[25], b[50];
// vis数组:标记数组
// b数组:用于存储某个数是否为素数

bool prime(int x){
    if(x < 2)return 0;
    for(int i = 2; i <= sqrt(x); i++){
        if(x % i == 0)return 0;
    }
    return 1;
}

void dfs(int k){
    int i;
    if(m > 10)return;// 如果已经输出了超过10个素数环,直接返回,不再继续搜索
    if(k == n + 1){// 如果已经处理完n个数字(即已经生成了一个完整的素数环)
        if(b[a[1] + a[n]]){// 检查第一个数字和最后一个数字之和是否为素数
            m++;
            for(int i = 1; i <= n; i++){
                cout << a[i] << ' ';
            }
            cout << endl;
        }
        return;
    }
    if(k & 1) i = 3; // 要形成素数环,必须是奇偶数相隔排列 
    else i = 2;
    for(; i <= n; i += 2){
        if(vis[i] == 0){
            vis[i] = 1;
            a[k] = i;
            // 检查当前位置的数字和前一个位置的数字之和是否为素数(通过b数组判断),如果是则继续搜索下一个位置
            if(b[a[k-1] + a[k]]) dfs(k + 1);
            vis[i] = 0;
        }
    }
}

int main(){
    cin >> n;
    // 如果n是奇数,根据素数环的性质(相邻数字之和为素数,且第一个和最后一个数字也要满足),无法构成素数环,直接返回0
    if(n & 1) return 0;
    // 预处理b数组,判断从2到n*2+1之间的每个数是否为素数,并存储在b数组中
    for(int i = 2; i <= n*2+1; i++) b[i] = prime(i);
    vis[1] = 1;// 标记数字1已经使用(因为素数环的第一个数字固定为1)
    a[1] = 1;// 将数字1放入素数环的第一个位置
    dfs(2);// 从第二个位置开始
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值