题单地址:题单中心-东方博宜OJ
1654. 全部排列问题
问题描述
输入 n 输出 1…n 个数的全部排列。全部排列中,数字可以重复 。
例如输入 33 ,输出全部排列的结果如下:111、112、113、121、122、123、131、132、133、211、212、213、221、222、223、231、232、233、311、312、313、321、322、323、331、332、333。
输入
一个整数 n(1 < n ≤ 6)。
输出
按照由小到大的顺序输出 1…n 这 n 个数的全部排列情况。
样例
输入
2
输出
11
12
21
22
解析:深搜的本质也是枚举,递归负责纵向遍历,枚举每一位的元素个数,for循环负责横向遍历,枚举区间所有元素,两个方向的枚举可以得到所有组合。
#include <bits/stdc++.h>
using namespace std;
int n, a[10];
void dfs(int k){
if(k == n){
for(int i = 0; i < n; i++){
cout << a[i];
}
cout << endl;
return;
}
for(int i = 1; i <= n; i++){
a[k] = i;
dfs(k + 1);
}
}
int main(){
cin >> n;
dfs(0);
}
1308. 全排列的结果
问题描述
从键盘读入一个整数 n,请输出 1∼n 中所有整数的全排列,按照由小到大输出结果,每组的 n 个数之间用空格隔开。
全排列的含义:从 n 个不同元素中任取 m(m ≤ n)个元素,按照一定的顺序排列起来,叫做从 n 个不同元素中取出 m 个元素的一个排列。当 m=n 时所有的排列情况叫全排列。
如当 n=3n=3 时,全排列的结果为:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
输入
一个整数 n(1 ≤ n ≤ 6);
输出
1∼n 中所有数的全排列的结果,按照由小到大输出,每行 n 个数。
样例
输入
3
输出
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
解析:这里每个数字只能使用一次,所以需要使用一个数组记录那些数字被使用过。递归返回后要做回溯,既使用的数字标记为未使用。
#include <bits/stdc++.h>
using namespace std;
int n, a[10], vis[10];
void dfs(int k){
if(k == n){
for(int i = 0; i < n; i++){
cout << a[i] << ' ';
}
cout << endl;
return;
}
for(int i = 1; i <= n; i++){
if(vis[i] == 0){
vis[i] = 1;
a[k] = i;
dfs(k + 1);
vis[i] = 0;
}
}
}
int main(){
cin >> n;
dfs(0);
}
1358. 素数环
问题描述
从 1∼n 这 n 个数,摆成一个环,要求相邻的两个数的和是素数,按照由小到大请输出所有可能的摆放形式。
比如:n=4,输出形式如下;
1:1 2 3 4
2:1 4 3 2
3:2 1 4 3
4:2 3 4 1
5:3 2 1 4
6:3 4 1 2
7:4 1 2 3
8:4 3 2 1
total:8
比如:n=6,输出形式如下;
1:1 4 3 2 5 6
2:1 6 5 2 3 4
3:2 3 4 1 6 5
4:2 5 6 1 4 3
5:3 2 5 6 1 4
6:3 4 1 6 5 2
7:4 1 6 5 2 3
8:4 3 2 5 6 1
9:5 2 3 4 1 6
10:5 6 1 4 3 2
11:6 1 4 3 2 5
12:6 5 2 3 4 1
total:12
输入
一个整数 n ;(2 ≤ n ≤ 10)
输出
前若干行,每行输出一个素数环的解,最后一行,输出解的总数。
样例
输入
4
输出
1:1 2 3 4
2:1 4 3 2
3:2 1 4 3
4:2 3 4 1
5:3 2 1 4
6:3 4 1 2
7:4 1 2 3
8:4 3 2 1
total:8
解析:和全排列一样,不过在填满 n 个数时,需要判断该数列是否满足素数环。
#include <bits/stdc++.h>
using namespace std;
int n, m = 1, a[15], vis[15];
bool prime(int x){
if(x < 2)return 0;
for(int i = 2; i <= sqrt(x); i++){
if(x % i == 0)return 0;
}
return 1;
}
void dfs(int k){
if(k == n){
int f = 1;
for(int i = 0; i < n-1; i++){
if(!prime(a[i] + a[i+1]))f = 0;
}
if(!prime(a[0] + a[n-1]))f = 0;
if(f){
cout << m++ << ":";
for(int i = 0; i < n; i++){
cout << a[i] << ' ';
}
cout << endl;
}
return;
}
for(int i = 1; i <= n; i++){
if(vis[i] == 0){
vis[i] = 1;
a[k] = i;
dfs(k + 1);
vis[i] = 0;
}
}
}
int main(){
cin >> n;
dfs(0);
cout << "total:" << m-1;
}
1361. n个数取出r个数排列
问题描述
从 1∼n 任意挑出 r 个数进行排列,请从小到大输出所有可能的排列结果。
如:n=5,r=2,则输出结果如下
1 2
1 3
1 4
1 5
2 1
2 3
2 4
2 5
3 1
3 2
3 4
3 5
4 1
4 2
4 3
4 5
5 1
5 2
5 3
5 4
输入
两个整数 n 和 r ( n 和 r 都是 2∼6 之间的整数)
输出
从 1∼n 中取出 r 个数的排列结果!
样例
输入
5 2
输出
1 2
1 3
1 4
1 5
2 1
2 3
2 4
2 5
3 1
3 2
3 4
3 5
4 1
4 2
4 3
4 5
5 1
5 2
5 3
5 4
解析:限定位数的全排列。
#include <bits/stdc++.h>
using namespace std;
int n, r, m = 1, a[15], vis[15];
void dfs(int k){
if(k == r){
for(int i = 0; i < r; i++){
cout << a[i] << ' ';
}
cout << endl;
return;
}
for(int i = 1; i <= n; i++){
if(vis[i] == 0){
vis[i] = 1;
a[k] = i;
dfs(k + 1);
vis[i] = 0;
}
}
}
int main(){
cin >> n >> r;
dfs(0);
}
1685. n个数的全排列
问题描述
从键盘读入 n 个整数(每个数都是 1∼9 之间的数),输出这 n 个整数的全排列(数字不能重复)。
输入
第 1 行输入一个整数 n。(1 ≤ n ≤ 8)
第 2 行输入 n 个不相等的整数。(每个数在 [1,9] 的范围内)
输出
输出若干行,每行包括 n 个数据,表示一种排列方案,所有的排列按字典码从小到大排序输出。
样例
输入
3
4 6 2
输出
2 4 6
2 6 4
4 2 6
4 6 2
6 2 4
6 4 2
解析:由于排列的数是给定的,且要按字典序输出,所有要将从大到小排序,再进行全排序。
#include <bits/stdc++.h>
using namespace std;
int n, r, a[15], vis[15], b[15];
void dfs(int k){
if(k == n){
for(int i = 0; i < n; i++){
cout << a[i] << ' ';
}
cout << endl;
return;
}
for(int i = 1; i <= n; i++){
if(vis[i] == 0){
vis[i] = 1;
a[k] = b[i];
dfs(k + 1);
vis[i] = 0;
}
}
}
int main(){
cin >> n;
for(int i = 1; i <= n; i++)cin >> b[i];
sort(b + 1, b + n + 1);
dfs(0);
}
1439. 素数环2
问题描述
将 1∼n 这 n 个数字首尾相连,形成一个圆环,要求圆环上任意两个相邻的数字之和都是一个素数,请编程输出符合条件的素数环。
输入
输入数据仅一行,包含一个正整数 n(n ≤ 20)。
输出
输出数据最多包括 10 行,每行由 n 个整数组成,表示前十个符合条件的素数环(不足十个时全部输出)。
所有素数环第一个元素必须是 1 ,且按照从小到大的顺序排列。
样例
输入
6
输出
1 4 3 2 5 6
1 6 5 2 3 4
解析:由于第 1 位必须为 1,所以偶数位必须为偶数,奇数位必须为奇数。
#include <bits/stdc++.h>
using namespace std;
int n, m = 1, a[25], vis[25], b[50];
// vis数组:标记数组
// b数组:用于存储某个数是否为素数
bool prime(int x){
if(x < 2)return 0;
for(int i = 2; i <= sqrt(x); i++){
if(x % i == 0)return 0;
}
return 1;
}
void dfs(int k){
int i;
if(m > 10)return;// 如果已经输出了超过10个素数环,直接返回,不再继续搜索
if(k == n + 1){// 如果已经处理完n个数字(即已经生成了一个完整的素数环)
if(b[a[1] + a[n]]){// 检查第一个数字和最后一个数字之和是否为素数
m++;
for(int i = 1; i <= n; i++){
cout << a[i] << ' ';
}
cout << endl;
}
return;
}
if(k & 1) i = 3; // 要形成素数环,必须是奇偶数相隔排列
else i = 2;
for(; i <= n; i += 2){
if(vis[i] == 0){
vis[i] = 1;
a[k] = i;
// 检查当前位置的数字和前一个位置的数字之和是否为素数(通过b数组判断),如果是则继续搜索下一个位置
if(b[a[k-1] + a[k]]) dfs(k + 1);
vis[i] = 0;
}
}
}
int main(){
cin >> n;
// 如果n是奇数,根据素数环的性质(相邻数字之和为素数,且第一个和最后一个数字也要满足),无法构成素数环,直接返回0
if(n & 1) return 0;
// 预处理b数组,判断从2到n*2+1之间的每个数是否为素数,并存储在b数组中
for(int i = 2; i <= n*2+1; i++) b[i] = prime(i);
vis[1] = 1;// 标记数字1已经使用(因为素数环的第一个数字固定为1)
a[1] = 1;// 将数字1放入素数环的第一个位置
dfs(2);// 从第二个位置开始
return 0;
}
深度优先搜索DFS回溯与全排列问题解析
1388

被折叠的 条评论
为什么被折叠?



