STL提供了两个用来计算排列组合关系的算法,分别是next_permutation和prev_permutation
前者输出录入的排列下一个的排列,后者输出录入排列的上一个排列
#include <iostream>
#include <algorithm>
using namespace std;
int main()
{
int num[3]={1,2,3};
do
{
cout<<num[0]<<" "<<num[1]<<" "<<num[2]<<endl;
}while(next_permutation(num,num+3));
return 0;
}

特别的如
输入2 3 1我们只会得到2 3 1后面的全排列

还有一种用法就是找到第n个全排列
#include <iostream>
#include<algorithm>
using namespace std;
int main() {
int a[7]={1,2,3,4,5,6,7};
sort(a,a+7);
int n=0;
do{
if(n==1654){
for(int i=0;i<7;i++)//输出第1654个全排列
cout<<a[i];
cout<<endl;
break;
}
n++;
}while(next_permutation(a,a+7));
return 0;
}
另外介绍一道例题
E - Permutations
You are given a permutation p of numbers 1, 2, ..., n. Let's define f(p) as the following sum:

Find the lexicographically m-th permutation of length n in the set of permutations having the maximum possible value of f(p).
Input
The single line of input contains two integers n and m (1 ≤ m ≤ cntn), where cntn is the number of permutations of length n with maximum possible value of f(p).
The problem consists of two subproblems. The subproblems have different constraints on the input. You will get some score for the correct submission of the subproblem. The description of the subproblems follows.
- In subproblem B1 (3 points), the constraint 1 ≤ n ≤ 8 will hold.
- In subproblem B2 (4 points), the constraint 1 ≤ n ≤ 50 will hold.
Output
Output n number forming the required permutation.
Examples
Input
2 2
Output
2 1
Input
3 2
Output
1 3 2
Note
In the first example, both permutations of numbers {1, 2} yield maximum possible f(p) which is equal to 4. Among them, (2, 1) comes second in lexicographical order.
题目大意是求一个排列p,满足使函数f(p)达到最大值
而这样的p可能有多个,于是题目又给了m,求在满足条件的这些排列中按字典序排第m个的排列
#include<iostream>
#include<algorithm>
using namespace std;
int a[10],b[50000][10];
int main() {
int n,m;
cin>>n>>m;
for(int i=1; i<=n; i++)
a[i]=i;
int cnt=0,maxx=0;
do {
int sum=0;
for(int i=1; i<=n; i++) {
for(int j=i; j<=n; j++) {
int temp=1000000;
for(int k=i; k<=j; k++) {
temp=min(temp,a[k]);
}
sum+=temp;
}
}
maxx=max(maxx,sum);
b[++cnt][0]=sum;
for(int i=1; i<=n; i++) {
b[cnt][i]=a[i];
}
} while(next_permutation(a+1,a+n+1));
int num=0;
for(int i=1; i<=cnt; i++) {
if(b[i][0]==maxx)
num++;
if(num==m) {
for(int j=1; j<=n; j++)
printf("%d ",b[i][j]);
printf("\n");
break;
}
}
return 0;
}
1691

被折叠的 条评论
为什么被折叠?



