作者🕵️♂️:让机器理解语言か
描述🎨:蓝桥杯冲刺阶段,一定要沉住气,一步一个脚印,胜利就在前方!
寄语💓:🐾没有白走的路,每一步都算数!🐾
问题一:开心的金明
题目描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 N 元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的 N 元。于是,他把每件物品规定了一个重要度,分为 5 等:用整数 1 ~ 5 表示,第 5 等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过 N 元(可以等于 N 元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第j件物品的价格为 v[j],重要度为 w[j],共选中了 k 件物品,编号依次为 j1,j2,⋯,jk,则所求的总和为:
v[j1]×w[j1]+v[j2]×w[j2]+⋯+v[jk]×w[jk]。
请你帮助金明设计一个满足要求的购物单。
输入描述
输入的第一行包含两个整数 N,m,(其中 N(<30000)表示总钱数,m(<25)为希望购买物品的个数)。从第 2 行到第 m+1 行,第 j 行给出了编号为 j−1 的物品的基本数据,每行有 2 个非负整数 v,p,(其中 v 表示该物品的价格(v≤
),p 表示该物品的重要度( 1 ~ 5 ))
输出描述
输出一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<
)。
输入输出样例
示例 1
输入
1000 5 800 2 400 5 300 5 400 3 200 2
输出
3900
【思路】
一道0/1背包的模板题,对这个知识点不是很熟悉的同学可以看一下我这篇文章: 算法第十四期——动态规划(DP)初入门
【代码】
不滚动
N, m = map(int, input().split())
dp = [[0] * (N + 1) for _ in range(m + 1)]
v = [0] * (m + 1); p = [0] * (m + 1)
for i in range(1, m + 1):
v[i], p[i] = map(int, input().split())
for i in range(1, m + 1):
for j in range(0, N + 1):
if j < v[i]:
dp[i][j] = dp[i - 1][j]
else:
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + v[i] * p[i])
print(dp[m][N])
交替滚动
N, m = map(int, input().split())
dp = [[0] * (N + 1) for _ in range(2)]
v = [0] * (m + 1); p = [0] * (m + 1)
for i in range(1, m + 1):
v[i], p[i] = map(int, input().split())
now, old = 0, 1
for i in range(1, m + 1):
now, old = old, now
for j in range(0, N + 1):
if j < v[i]:
dp[now][j] = dp[old][j]
else:
dp[now][j] = max(dp[old][j], dp[old][j - v[i]] + v[i] * p[i])
print(dp[now][N])
自我滚动
N, m = map(int, input().split())
dp = [0] * (N + 1)
v = [0] * (m + 1); p = [0] * (m + 1)
for i in range(1, m + 1):
v[i], p[i] = map(int, input().split())
for i in range(1, m + 1):
for j in range(N, v[i] - 1, -1):
dp[j] = max(dp[j], dp[j - v[i]] + v[i] * p[i])
print(dp[N])
题目二:积木画
问题描述
小明最近迷上了积木画, 有这么两种类型的积木, 分别为 I 型(大小为 2 个单位面积) 和 L 型 (大小为 3 个单位面积):
同时, 小明有一块面积大小为 2×N 的画布, 画布由 2×N 个 1×1 区域构 成。小明需要用以上两种积木将画布拼满, 他想知道总共有多少种不同的方式? 积木可以任意旋转, 且画布的方向固定。
输入格式
输入一个整数 N,表示画布大小。
输出格式
输出一个整数表示答案。由于答案可能很大,所以输出其对 1000000007 取模后的值。
样例输入
3
样例输出
5
样例说明
五种情况如下图所示,颜色只是为了标识不同的积木:
评测用例规模与约定
对于所有测试用例,1≤N≤10000000.
【思路】
dp[i][j]:前i-1个位置铺满的情况下, 第i个位置的第j个状态的情况数
在位置i的4个状态下,铺满位置i,位置i+1的可能出现的状态如下:
从第i列到第i+1列的转移表:
【代码】
Python3(非滚动数组实现)(TLE)
n = int(input())
MOD = int(1e9) + 7
g = [[1, 1, 1, 1], [0, 0, 1, 1], [0, 1, 0, 1], [1, 0, 0, 0]]
dp = [[0] * 4 for _ in range(n + 10)]
dp[1][0] = 1
for i in range(1, n + 1):
for j in range(4): # 第i列的状态j
for k in range(4): # 第j列的状态k
if g[j][k] == 1: # 第i列的状态j可以转移第j列的状态k
dp[i + 1][k] = (dp[i + 1][k] + dp[i][j]) % MOD
print(dp[n + 1][0])
C++ (滚动数组实现) (AC)
#include <iostream>
#include <string.h>
using namespace std;
const int N = 1e7 + 10, MOD = 1e9 + 7;
int dp[2][4];
int g[4][4] = {{1, 1, 1, 1}, {0, 0, 1, 1}, {0, 1, 0, 1}, {1, 0, 0, 0}};
int main()
{
int n; cin >> n;
int old = 0, now = 1;
dp[now][0] = 1;
for (int i = 1; i <= n; i++) {
swap(now, old);
memset(dp[now], 0 ,sizeof(dp[now]));
for (int j = 0; j < 4; j++) {
for (int k = 0; k < 4; k++ ) {
dp[now][k] = (dp[now][k] + dp[old][j] * g[j][k]) % MOD;
}
}
}
cout << dp[now][0];
return 0;
}