洛谷 P1002 过河卒 - Java题解

题目描述

棋盘上 A 点有一个过河卒,需要走到目标 B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,A 点(0,0)、B 点(n,m),同样马的位置坐标是需要给出的。

现在要求你计算出卒从 A 点能够到达 B 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入格式

一行四个正整数,分别表示 B 点坐标和马的坐标。

输出格式

一个整数,表示所有的路径条数。

输入输出样例

输入 #1复制

6 6 3 3

输出 #1复制

6

说明/提示

对于 100%100% 的数据,1≤n,m≤20,0≤ 马的坐标≤20。

【题目来源】

NOIP 2002 普及组第四题

链接:P1002 [NOIP2002 普及组] 过河卒 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)

题解

典型的dp(动态规划)问题。

先考虑不带马的情况。

根据题目可知,过河卒只能通过向下或向右。从终点位置到起点进行分析,到终点的路径只能是从(n-1,m)或(n,m-1)点来走,所以到终点路径数也只能是到这两点路径数的加和。因此推出动态规划的递推式为

f(i, j) = f(i-1, j) + f(i, j-1)

递推式推出后,由于 f 数组是不能越界的,所以将地图的方位全体加1,进行操作。

考虑马

由于马的位置以及它本身的日字不能走,所以需要一个二维数组去记录不能走的方位。

代码如下:


import java.io.*;
import java.util.Scanner;

public class P1002 {

    // 记录不能走的位置
    static int[] x = {0, -2, -1, 1, 2, 2, 1, -1, -2};
    static int[] y = {0, 1, 2, 2, 1, -1, -2, -2, -1};

    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt() + 1;
        int m = sc.nextInt() + 1;
        int a = sc.nextInt() + 1;
        int b = sc.nextInt() + 1;
        long[][] f = new long[40][40];
        // 记录不能走的二维数组
        boolean[][] flag = new boolean[40][40];
        f[1][1] = 1;
        for (int i = 0; i < x.length; i++) {
            flag[a + x[i]][b + y[i]] = true;
        }
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                if(i == 1 && j == 1) continue;
                if(!flag[i][j]){
                    f[i][j] = f[i - 1][j] + f[i][j - 1];
                }
            }
        }
        System.out.println(f[n][m]);
    }

 优化思路

降维:将二维数组转化为一维数组

观察我们能发现 , 这个 f(i-1, j) 与当前位置的 f(i,j) 的第二维一样 , 都是 j , 而第一维只是差了 1

我们考虑直接去掉第一维(这里不赘述降维的原理,具体请自行查询资料),来看这个状态转移方程 :

f(j) = f(j) + f(j−1)

优化后的代码:


import java.io.*;
import java.util.Scanner;

public class P1002 {

    // 记录不能走的位置
    static int[] x = {0, -2, -1, 1, 2, 2, 1, -1, -2};
    static int[] y = {0, 1, 2, 2, 1, -1, -2, -2, -1};

    public static void main(String[] args) throws IOException {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt() + 1;
        int m = sc.nextInt() + 1;
        int a = sc.nextInt() + 1;
        int b = sc.nextInt() + 1;
        long[] f = new long[40];
        // 记录不能走的二维数组
        boolean[][] flag = new boolean[40][40];
        f[1] = 1;
        for (int i = 0; i < x.length; i++) {
            flag[a + x[i]][b + y[i]] = true;
        }
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                if (flag[i][j]) {
                    f[j] = 0;
                    continue;
                }
                f[j] = f[j] + f[j - 1];
            }
        }
        System.out.println(f[m]);
    }

    

到了这里对于 f数组的优化就结束了,但是还有一个很大的数组需要优化就是flag标记数组,这个数组优化后可以节省大量的时间和空间,优化的思路则涉及一些数学问题。

具体请参见距离 - OI Wiki距离 - OI Wiki,切比雪夫距离和曼哈顿距离

代码如下:



import java.io.*;
import java.util.Scanner;

public class P1002 {

    public static void main(String[] args) throws IOException {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt() + 1;
        int m = sc.nextInt() + 1;
        int a = sc.nextInt() + 1;
        int b = sc.nextInt() + 1;
        long[] f = new long[40];
        f[1] = 1;
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                if(check(i, j, a, b)){
                    f[j] = 0;
                    continue;
                }
                f[j] = f[j] + f[j - 1];
            }
        }
        System.out.println(f[m]);
    }

    public static boolean check(int x, int y, int a, int b){
        if(x == a && y == b){
            return true;
        }
        return (Math.abs(a - x) + Math.abs(b - y) == 3) && (Math.max(Math.abs(a - x), Math.abs(b - y)) == 2);
    }
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值