对顶堆详解

对顶堆是由一个大根堆和一个小根堆组成的特殊数据结构,用于快速维护区间最值。其每一层节点从上往下递减。对顶堆常用于查找最大/最小值,维护有序序列(如优先级队列),以及计算中位数等。给定代码示例展示了如何使用对顶堆解决求前i个数字中位数的问题。
摘要由CSDN通过智能技术生成

目录

一.什么是对顶堆

二.对顶堆的性质

三.对顶堆的应用


一.什么是对顶堆

我们都知道,堆是一种及其有用的数据结构,他可以在短时间内维护出区间最值,但普通的堆能起到的作用毕竟是有限的,但我们可以考虑变形,解决更多的问题,例如今天我们要讲的对顶堆。(如果不知道什么是堆的小伙伴,可以参考这篇

顾名思义,对顶堆是两个堆,一个大根堆,一个小根堆组成的特殊的数据结构

二.对顶堆的性质

如上图,如果说上面是个小根堆,下面是个大根堆,大根堆的元素都小于于小根堆的元素,那么我们可以发现:

每一层节点从上往下逐层递减

三.对顶堆的应用

对顶堆可以被用来解决一系列与最值有关的问题,例如:

  1. 在一大堆数据中,查找最大或最小值。
  2. 维护一个有序序列(例如优先级队列)。
  3. 求中位数或者第 K 大/小的数。

对顶堆的时间复杂度为 O(log n)。

对顶堆本质上是通过不断地调整,而维护大根堆里的所有元素比小根堆小这个性质

举个例子,求前i个数字的中位数题目详情见洛谷P1168 中位数

但我们在输出答案前需要对midmid进行调整,如果小根堆和大根堆内元素相同,就无需处理,此时midmid仍然是当前的中位数。

如果两个堆中元素个数不同,那我们就需要进行调整。

具体是把元素个数较多的堆的堆顶作为mid,mid加入元素较少的堆。

同理,如果q2中元素比q1多,同理

代码如下:

#include <bits/stdc++.h>
using namespace std;
int a[100010],n;
priority_queue<int> q1;
priority_queue<int,vector<int>,greater<int> > q2;
int main() {
	cin>>n;
	for(int i=1;i<=n;i++) 
		cin>>a[i];
	q2.push(a[1]);
	for(int i=2;i<=n+1;i++){
		if(i%2==0) cout<<q2.top()<<"\n";
		if(i>n) break;
		if(q2.size()>q1.size()){
			if(a[i]>q2.top()){
				q1.push(q2.top());
				q2.pop();
				q2.push(a[i]);
			}else q1.push(a[i]);
		}else{
			if(a[i]<q1.top()){
				q2.push(q1.top());
				q1.pop();
				q1.push(a[i]);
			}else q2.push(a[i]);
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值