「数据结构详解·十四」对顶堆


1. 对顶堆的概念

对顶堆,是二叉堆的一种应用。它是将处理的数据,分成一个小根堆、一个大根堆,然后可以快速求解出一些东西。
下面我们直接通过例题来理解。

2. 例题详解

2-1. P1168 中位数

我们可以开一个大根堆 q max ⁡ q_{\max} qmax,维护较小的值;再开一个小根堆 q min ⁡ q_{\min} qmin,维护较大的值。
每次加入一个数 x x x:若 x x x 大于大根堆堆顶 t max ⁡ t_{\max} tmax,则加入小根堆;若 x ≤ t max ⁡ x \le t_{\max} xtmax,则加入大根堆。
为什么要这么做呢?
首先,这样可以保证大根堆的元素值都小于小根堆的元素值。
那么这样的话,对于 t max ⁡ t_{\max} tmax,有 ∣ q min ⁡ ∣ |q_{\min}| qmin 个元素大于 t max ⁡ t_{\max} tmax,有 ∣ q max ⁡ ∣ − 1 |q_{\max}|-1 qmax1 个元素小于等于 t max ⁡ t_{\max} tmax;对于 t min ⁡ t_{\min} tmin 是正好相反的。
那么我们要找到当前中位数,只要让 ∣ ∣ q max ⁡ ∣ − ∣ q min ⁡ ∣ ∣ ≤ 1 ||q_{\max}|-|q_{\min}||\le1 ∣∣qmaxqmin∣∣1(即两个堆的元素数差值不大于)即可。
至于怎么做,不难想到,只要元素个数多的堆的堆顶取出,放入元素个数少的堆即可。然后奇数项的中位数就是元素个数多的堆的堆顶。
而时间复杂度,对于查询操作,自然是 O ( 1 ) O(1) O(1) 的;而每次插入元素后很难不发现最多调整一次,因此总时间复杂度是 O ( N log ⁡ N ) O(N\log N) O(NlogN)
下面我们来模拟一下样例二。
对于下面的示意图,上面是 q min ⁡ q_{\min} qmin,下面是 q max ⁡ q_{\max} qmax

首先遇到 3 3 3,大根堆为空,加入 q max ⁡ q_{\max} qmax

此时中位数为 t max ⁡ = 3 t_{\max}=3 tmax=3

接着遇到 1 1 1 1 ≤ t max ⁡ = 3 1\le t_{\max}=3 1tmax=3,故加入 q max ⁡ q_{\max} qmax

注意到 ∣ q max ⁡ ∣ − ∣ q min ⁡ ∣ = 2 > 1 |q_{\max}|-|q_{\min}|=2>1 qmaxqmin=2>1,因此将 q max ⁡ q_{\max} qmax 的堆顶元素调整到 q min ⁡ q_{\min} qmin 中。

然后遇到 5 5 5 5 > t max ⁡ = 1 5> t_{\max}=1 5>tmax=1,故加入 q min ⁡ q_{\min} qmin

此时中位数为 t min ⁡ = 3 t_{\min}=3 tmin=3

紧接着遇到 9 9 9 9 > t max ⁡ = 1 9> t_{\max}=1 9>tmax=1,故加入 q min ⁡ q_{\min} qmin

注意到 ∣ q min ⁡ ∣ − ∣ q max ⁡ ∣ = 2 > 1 |q_{\min}|-|q_{\max}|=2>1 qminqmax=2>1,因此将 q min ⁡ q_{\min} qmin 的堆顶元素调整到 q max ⁡ q_{\max} qmax 中。

再下来遇到 8 8 8 9 > t max ⁡ = 3 9> t_{\max}=3 9>tmax=3,故加入 q min ⁡ q_{\min} qmin

此时中位数为 t min ⁡ = 5 t_{\min}=5 tmin=5

再接下来遇到 7 7 7 7 > t max ⁡ = 3 7> t_{\max}=3 7>tmax=3,故加入 q min ⁡ q_{\min} qmin

注意到 ∣ q min ⁡ ∣ − ∣ q max ⁡ ∣ = 2 > 1 |q_{\min}|-|q_{\max}|=2>1 qminqmax=2>1,因此将 q min ⁡ q_{\min} qmin 的堆顶元素调整到 q max ⁡ q_{\max} qmax 中。

最后遇到 6 6 6 6 > t max ⁡ = 5 6> t_{\max}=5 6>tmax=5,故加入 q min ⁡ q_{\min} qmin

此时中位数为 t min ⁡ = 6 t_{\min}=6 tmin=6

参考代码:

#include<bits/stdc++.h>
using namespace std;

priority_queue<int>a;
priority_queue<int,vector<int>,greater<int>>b;

int read()
{
	int s=0,f=1;
	char ch=getchar();
	while(ch<'0'||ch>'9')
	{
		if(ch=='-') f=-1;
		ch=getchar();
	}
	while(ch>='0'&&ch<='9')
	{
		s=s*10+ch-48;
		ch=getchar();
	}
	return s*f;
}

int main()
{
	int n=read();
	a.push(read());
	printf("%d\n",a.top());
	for(int i=2;i<=n;i++)
	{
		int m=read();
		if(m>a.top()) b.push(m);
		else a.push(m);
		while(abs((int)a.size()-(int)b.size())>1)
		{
			if(a.size()>b.size())
			{
				b.push(a.top());
				a.pop();
			}
			else
			{
				a.push(b.top());
				b.pop();
			}
		}
		if(i&1) printf("%d\n",a.size()>b.size()?a.top():b.top());
	}
	return 0;
}

2-2. P1801 黑匣子

虽然变成了第 k k k 小,但其实是同理。
我们仍然可以使用对顶堆解决问题。
只需要改变堆大根堆与小根堆内的元素个数即可。
代码留给读者自行思考。

3. 巩固练习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值