- 博客(172)
- 收藏
- 关注
原创 数据标注labeling国内下载
根据系统(Windows/Linux/macOS)和硬件(是否需要 GPU 加速),选择对应安装包(如 Windows 选带。根据你的需求(如是否需要 AI 自动标注、是否有 GPU 等),选择对应的工具和下载方式即可~选择对应系统的安装包(如 Windows 选。若 GitHub 下载缓慢,可优先选择。文件),下载后直接运行。,即可打开标注界面。),下载后直接运行。
2025-10-10 15:33:43
600
原创 yolov5 环境光速配置!!!
这个你得cd(打开)你自己的文件目录,写我的是没用的要记得是yolov5的目录。为什么选3.9呢而不是3.8呢,yolov5这里面的代码会有不兼容的情况。我建议直接下载v6版本,这样问题最少能少一大半。遇到问题按y或者a 具体看情况。这是pycahrm中环境配置。这两个都行,那个能运行。
2025-10-10 14:25:33
138
1
原创 d2l代码解析
你可以把这个 MLP 模型想象成一个简单的信息处理流水线接收原材料:一个 20 维的数字向量X。初级加工(隐藏层)就像一个初级车间,把原材料加工成 256 种不同的半成品零件。筛选优化(ReLU 激活)F.relu就像一个质检员,把所有不合格的(负值)半成品丢掉(变成 0),只保留合格的。最终组装(输出层)self.out就像一个最终组装车间,把 256 种合格的半成品零件组装成 10 个最终产品(10 维输出)。这个简单的两层模型是理解所有深度学习模型(包括你之前问的复杂的目标检测模型)的基础。
2025-10-10 14:10:25
860
原创 d2l代码解析
python运行:函数接收一个参数wd,表示权重衰减系数(正则化强度):创建一个简单的线性模型,包含一个线性层,输入特征数为num_inputs,输出为 1(适用于回归问题)python运行使用均方误差损失(MSE),这是回归问题的常用损失函数表示不自动对损失值进行聚合(不计算均值或总和),保留每个样本的损失值,方便后续灵活处理。
2025-10-10 14:09:22
501
原创 训练误差和测试误差一样
两张图对比的核心是正则化对 “过拟合” 的缓解作用无正则化(lambda=0):模型过拟合训练集,训练误差小、测试误差大,两者差距大。强正则化(lambda=100):模型复杂度被约束,训练误差上升但更 “稳健”,测试误差下降且与训练误差更接近,泛化能力提升。如果你的问题是 “希望测试误差和训练误差更一致(泛化好)”,那么适当的正则化是关键 —— 它能让模型既不 “欠拟合”(学不到规律),也不 “过拟合”(学错规律),从而让训练和测试误差更接近。
2025-10-10 14:07:32
182
原创 yolov5 train运行代码第一次运行可能出现的问题
Comet 是一个机器学习实验管理平台,支持实时记录训练指标(如lossmAP)、代码版本、超参数(如epochsbatch-size),还能在线生成可视化图表,方便你分析训练过程中的问题(比如是否过拟合)或对比不同实验的效果。
2025-10-10 13:58:10
1053
原创 NoProfile -InputFormat None -ExecutionPolicy Bypass -Command “irm get.scoop.sh | iex“使用国内的镜像
这个方法是通过一个国内的代理服务来加速访问 GitHub 的官方安装脚本,非常稳定可靠。官方安装脚本慢的问题,你可以根据实际情况选择使用。如果第一个 Gitee 镜像失效,你可以尝试这个。这些备选方案都能有效地解决国内网络访问。
2025-10-10 13:40:54
372
原创 Windows 的 CMD(命令提示符)中安装和使用 lux
特性方法一 (Scoop)方法二 (手动安装)安装难度极低 (一行命令)中等 (需要手动配置环境变量)更新方便性非常方便 (不便 (需要重新下载文件并替换)依赖管理自动处理 (如 ffmpeg)需要手动下载和配置推荐度⭐⭐⭐⭐⭐⭐⭐⭐对于大多数用户,强烈推荐使用方法一 (Scoop),一劳永逸。
2025-10-10 13:39:31
1500
原创 ffmpeg.exe(lux 合并视频片段时需要依赖 ffmpeg)
从报错信息来看,核心问题是ffmpeg.exelux合并视频片段时需要依赖ffmpeg),而后面的'p'不是内部命令的报错,是次要的(大概率是之前命令输入错误或残留的异常输出)。
2025-10-10 13:37:54
205
原创 堆空间与栈空间
堆空间是动态分配的内存区域,用于存储程序运行时创建的对象和数据。堆的大小不固定,可以根据需要动态扩展或收缩。堆空间的管理由程序员或垃圾回收机制负责,容易产生内存泄漏或碎片化问题。栈空间是线性内存区域,用于存储函数调用时的局部变量、参数和返回地址。栈的管理由编译器自动完成,遵循“后进先出”(LIFO)原则。
2025-09-03 13:42:38
333
原创 字节填充的意义
在数据传输中,某些特定字符(如帧起始符、帧结束符)具有控制意义。字节填充(Byte Stuffing)是一种数据链路层协议中常用的技术,主要用于解决数据传输中的特殊字符冲突问题。可表示为: [ D' = D \text{(普通字符)} \cup {ESC \oplus C \mid C \in D \text{且为控制字符}} ]字节填充使数据字段可以包含任意比特组合,不受控制字符限制,实现数据的透明传输。例如,在PPP协议中,用。字节填充允许协议灵活处理数据内容,无需依赖硬件层对特殊字符的规避。
2025-06-26 16:35:33
445
原创 softmax和交叉熵的配合求导
Softmax函数将输入向量转换为概率分布,公式为: $$ \sigma(\mathbf{z}){j=1}^K e^{z_j}} $$ 其中,$\mathbf{z}$为输入向量,$K$为类别数,$\sigma(\mathbf{z})_i$表示第$i$类的预测概率。交叉熵损失用于衡量预测概率分布与真实分布的差异。
2025-06-25 19:59:25
402
原创 storage 在 Pytorch 中的用途
可以直接操作原始内存数据,适用于需要低级别控制的场景(如自定义 C++ 扩展)。,即使它们的形状或维度不同。这种机制避免了数据复制,提升了内存效率。,可以实现高效的内存管理和数据操作,但需注意底层细节以避免错误。,即使它们的形状(shape)或步幅(stride)不同。是连续的一维内存块,通常存储相同类型的数据(如。张量通过视图(view)机制,将。是一个底层数据结构,用于实际存储张量(每个张量的数据都依赖于一个。对象,但多个张量可以共享同一个。中的数据以多维形式呈现。多个张量可以共享同一。
2025-06-24 20:25:31
439
原创 dtype
dtype是数据类型的缩写,通常用于编程和数据处理领域,特别是在Python的NumPy和Pandas库中。它定义了数组中元素的类型,例如整数、浮点数、字符串等。dtype的选择直接影响数据的存储效率、计算精度以及内存占用。通过合理设置dtype,可以显著提升程序的效率和性能。
2025-06-24 19:39:31
470
原创 torch.optim.SGD(net.parameters())
是 PyTorch 中实现随机梯度下降(Stochastic Gradient Descent)的优化器。SGD 适用于多数深度学习任务,在批归一化等技术的配合下能取得较好效果。对于稀疏数据或需要自适应学习率的场景,可考虑 Adam 等其他优化器。
2025-06-24 16:53:03
489
原创 bias.data.fill_(0)
bias.data.fill_(0)是PyTorch中将神经网络的偏置参数初始化为0的操作。它通过.data访问原始张量,使用.fill_()方法原地填充0值,常用于模型初始化或参数重置。该操作会绕过梯度计算,若需保留梯度应配合torch.no_grad()使用。等效操作包括nn.init.zeros_(layer.bias)。典型应用场景包括模型训练前的参数初始化和特定情况下的参数清零。
2025-06-24 16:36:15
356
原创 nn.Sequential和nn.Linear
权重矩阵 ( A ) 的形状为 ( 5 \times 10 ),偏置向量 ( b ) 的形状为 ( 5 )。是 PyTorch 中的全连接层(线性层),用于实现线性变换。其数学形式为 ( y = xA^T + b ),其中 ( A ) 是权重矩阵,( b ) 是偏置向量。这个模型将 784 维输入(如 flattened MNIST 图像)通过两个隐藏层映射到一个输出,并使用 Sigmoid 激活函数生成概率。输入数据首先通过第一个线性层,然后经过 ReLU 激活,最后通过第二个线性层输出。
2025-06-24 16:28:29
455
原创 nn.sequential(nn.linear(2,1))
的权重会从均匀分布$U(-\sqrt{k}, \sqrt{k})$初始化,其中$k = \frac{1}{in_features}$,偏置初始化为0。计算过程相当于: $output = w_1 \times x_1 + w_2 \times x_2 + b$该模型仅包含一个线性层,将2维输入映射为1维输出。线性层的权重矩阵维度为1×2,偏置维度为1。构建一个简单的神经网络模型,输入维度为2,输出维度为1。
2025-06-24 16:24:05
351
原创 next()with iter()
时,需要传入一个迭代器对象,它会返回迭代器的下一个值。如果迭代器耗尽(没有更多元素),则会抛出。常用于手动控制迭代过程,例如在处理大型数据时仅获取第一个匹配项,或结合。是 Python 的内置函数,用于从迭代器中获取下一个元素。当迭代器耗尽时,会返回该默认值而非抛出异常。结合使用,用于手动控制迭代过程。
2025-06-24 16:06:00
226
原创 DataLoader
DataLoader 是 PyTorch 中用于高效加载数据的工具,支持数据批处理、多线程/进程加载、内存优化等功能。它通过Dataset和DataLoader类实现数据管道的封装,常用于深度学习训练场景。以下是一个加载图像数据的自定义Datasetimport os。
2025-06-24 16:02:16
739
原创 gluon.data.ArrayDaraset
是 Apache MXNet(Gluon API)中的一个数据加载工具,用于将多个 NumPy 数组或类似数组的对象组合成一个数据集。它适用于简单的小规模数据加载场景,常用于原型设计或快速实验。
2025-06-24 15:55:45
362
原创 .synthetiic_data
合成数据是通过算法或模拟生成的人工数据,而非从真实世界直接收集。这类数据在隐私保护、模型训练、测试场景构建等领域具有广泛应用,尤其在真实数据稀缺或敏感的场合。
2025-06-24 15:50:50
274
原创 直接序列扩频、调频扩频
扩频过程可通过以下公式表示: $s(t) = d(t) \cdot c(t) \cdot \cos(2\pi f_c t)$ 其中$d(t)$为数据信号,$c(t)$为伪随机码,$f_c$为载波频率。跳频信号表达式为: $s(t) = d(t) \cdot \cos(2\pi f_i t + \phi_i)$ 其中$f_i$为第i个跳频时刻的载波频率,$\phi_i$为相位。跳频图案由伪随机码决定,跳变速率可分为慢跳频(多个符号周期跳一次)和快跳频(一个符号周期跳多次)。
2025-06-23 20:10:54
280
原创 红外通信、激光通信
红外通信利用红外光(波长700nm-1mm)作为信息载体,采用调制技术(如ASK、PWM)将信号加载到红外光束上。典型应用包括家电遥控器、短距离数据传输(如IrDA标准)。优点在于成本低、抗电磁干扰;缺点是传输距离短(通常<10米)、需直线传播且易受环境光线干扰。激光通信以高强度相干激光(如波长850nm、1550nm)传输信息,分为自由空间光通信(FSO)和光纤通信。优势包括高速率(可达100Gbps以上)、长距离(太空通信达数百万公里)、强抗干扰;缺点是设备成本高、需精密对准(尤其是FSO)。
2025-06-23 19:41:16
544
原创 微波通讯和卫星通信
微波通讯利用频率范围为300MHz至300GHz的电磁波进行信息传输,具有带宽大、抗干扰性强等特点,适用于视距范围内的点对点通信。卫星通信通过地球同步轨道(GEO)或低轨道(LEO)卫星作为中继,实现全球覆盖,尤其适用于偏远地区。
2025-06-23 19:40:04
401
原创 requires_grad=True
是一个张量属性,用于指示该张量是否需要计算梯度。梯度是反向传播中用于优化模型参数的关键部分。,可以高效控制模型的训练过程。在 PyTorch 中,在创建张量时或之后启用。
2025-06-23 15:47:30
628
原创 yield
是 Python 中的一个关键字,用于定义生成器函数。生成器函数返回一个迭代器,可以通过。逐步产生值,而不是一次性返回所有结果。生成器函数在每次调用。语句暂停,并保存当前状态,下次继续执行后续代码。
2025-06-23 15:32:31
317
原创 random.shuffle
模块提供的一个函数,用于随机打乱序列(如列表)中元素的顺序。它直接修改原序列,而不返回新的序列。如果不想修改原列表,可以用。是 Python 中。
2025-06-23 15:28:59
628
原创 .detach()
是 PyTorch 中的一个方法,主要用于从计算图中分离张量,使其不再参与梯度计算。通常在需要中断梯度反向传播或需要将张量转换为普通 NumPy 数组时使用。
2025-06-23 11:26:36
519
原创 sys.argv
模块提供的一个列表,用于获取命令行参数。脚本运行时,通过命令行输入的参数会被存储在这个列表中,方便程序调用。是 Python 中。
2025-06-23 10:02:01
760
原创 .rename(none)
通常用于数据处理或编程中,目的是取消对列或变量的重命名操作,恢复默认名称或清除自定义命名。以下是几种常见场景下的使用方法。
2025-06-22 17:06:41
195
原创 refine_names()
是一个用于数据清洗的函数,通常出现在数据处理库(如或)中,主要用于规范化列名或变量名,使其更符合编程规范或分析需求。
2025-06-22 16:59:40
381
原创 mean(-3)
是一个数学表达式,通常表示对某个数据集合或数组在特定维度(如第 -3 维)上求平均值。具体含义取决于上下文和使用的编程语言或数学工具。输出结果为合并第一维后的平均值,形状为 ( (3, 4) )。表示从后往前数的第三维(即第一维)。在 Python 的 NumPy 或类似库中,是计算数组平均值的方法,参数。指定沿哪个维度计算。表示从后往前数的维度。
2025-06-22 16:25:23
237
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅