Dense Layer vs. Convolutional Layer

Dense Layer vs. Convolutional Layer

Dense Layer (Fully Connected Layer)

  • Purpose: Used for learning global patterns in input data by connecting every neuron to all activations from the previous layer.
  • Input Shape: Flattened 1D vectors (e.g., (batch_size, features)).
  • Operation: Computes output = activation(dot(input, weights) + bias).
  • Use Case: Common in final layers of classification networks (e.g., MLPs).
from tensorflow.keras.layers import Dense  
dense_layer = Dense(units=64, activation='relu')  

Convolutional Layer (Conv2D)

  • Purpose: Captures local spatial patterns (e.g., edges, textures) via sliding filters/kernels over input.
  • Input Shape: 3D/4D tensors (
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值