Dense Layer vs. Convolutional Layer
Dense Layer (Fully Connected Layer)
- Purpose: Used for learning global patterns in input data by connecting every neuron to all activations from the previous layer.
- Input Shape: Flattened 1D vectors (e.g.,
(batch_size, features)
). - Operation: Computes
output = activation(dot(input, weights) + bias)
. - Use Case: Common in final layers of classification networks (e.g., MLPs).
from tensorflow.keras.layers import Dense
dense_layer = Dense(units=64, activation='relu')
Convolutional Layer (Conv2D)
- Purpose: Captures local spatial patterns (e.g., edges, textures) via sliding filters/kernels over input.
- Input Shape: 3D/4D tensors (