luogu P4317花神的数论题

花神的数论题

题目背景

众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。

题目描述

话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。 花神的题目是这样的:设 sum ( i ) \text{sum}(i) sum(i) 表示 i i i 的二进制表示中 1 1 1 的个数。给出一个正整数 N N N ,花神要问你 ∏ i = 1 N sum ( i ) \prod_{i=1}^{N}\text{sum}(i) i=1Nsum(i) ,也就是 sum ( 1 ) ∼ sum ( N ) \text{sum}(1)\sim\text{sum}(N) sum(1)sum(N) 的乘积。

输入格式

一个正整数 N N N

输出格式

一个数,答案模 10000007 10000007 10000007 的值。

样例 #1

样例输入 #1

3

样例输出 #1

2

提示

对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 1 0 15 1\le N\le 10^{15} 1N1015

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MOD=10000007;
ll f[55][2][55],r;//f[i][j][k]//表示i个数字以j开头的共k个1 
ll qpow(ll a,ll b){//快速幂 
	ll res=1;
	while(b){
		if(b&1) res=res*a%MOD;
		a=a*a%MOD;
		b/=2;
	}
	return res; 
} 
void init(){
	f[1][0][0]=1;f[1][1][1]=1;
	for(int i=2;i<=50;i++)
		for(int j=0;j<=1;j++)
			for(int k=0;k<=i;k++)
				for(int t=0;t<=1;t++){
					if(!j) f[i][j][k]+=f[i-1][t][k];
					if(j&&k) f[i][j][k]+=f[i-1][t][k-1];
				}
}
ll sum(ll n){
	ll cnt=0;
	while(n){
		if(n%2) cnt++;
		n/=2;
	}
	return cnt;
} 
ll dp(ll n){
	vector<int> num;
	while(n){
		num.push_back(n%2);n/=2;
	}
	int len=num.size();
	ll ans=1;
	//从1-len个1枚举
	for(int i=1;i<=len;i++){
		//先枚举小于len位的
		for(int j=1;j<len;j++)
			ans=(ans*(qpow(i,f[j][1][i])%MOD))%MOD; 
		//直接从len-1位开始枚举
		int t=i-1;//定义有几个1 
		for(int j=len-2;j>=0;j--){
			if(num[j]){
			ans=(ans*(qpow(i,f[j+1][0][t])%MOD))%MOD; 
			t--;
			}
			if(t<0) break;
		}
	}
	return ans;
}
int main(){
	init();
	cin>>r;
	cout<<sum(r)*dp(r)%MOD;

}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值