花神的数论题
题目背景
众所周知,花神多年来凭借无边的神力狂虐各大 OJ、OI、CF、TC …… 当然也包括 CH 啦。
题目描述
话说花神这天又来讲课了。课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了。 花神的题目是这样的:设 sum ( i ) \text{sum}(i) sum(i) 表示 i i i 的二进制表示中 1 1 1 的个数。给出一个正整数 N N N ,花神要问你 ∏ i = 1 N sum ( i ) \prod_{i=1}^{N}\text{sum}(i) ∏i=1Nsum(i) ,也就是 sum ( 1 ) ∼ sum ( N ) \text{sum}(1)\sim\text{sum}(N) sum(1)∼sum(N) 的乘积。
输入格式
一个正整数 N N N。
输出格式
一个数,答案模 10000007 10000007 10000007 的值。
样例 #1
样例输入 #1
3
样例输出 #1
2
提示
对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 1 0 15 1\le N\le 10^{15} 1≤N≤1015。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MOD=10000007;
ll f[55][2][55],r;//f[i][j][k]//表示i个数字以j开头的共k个1
ll qpow(ll a,ll b){//快速幂
ll res=1;
while(b){
if(b&1) res=res*a%MOD;
a=a*a%MOD;
b/=2;
}
return res;
}
void init(){
f[1][0][0]=1;f[1][1][1]=1;
for(int i=2;i<=50;i++)
for(int j=0;j<=1;j++)
for(int k=0;k<=i;k++)
for(int t=0;t<=1;t++){
if(!j) f[i][j][k]+=f[i-1][t][k];
if(j&&k) f[i][j][k]+=f[i-1][t][k-1];
}
}
ll sum(ll n){
ll cnt=0;
while(n){
if(n%2) cnt++;
n/=2;
}
return cnt;
}
ll dp(ll n){
vector<int> num;
while(n){
num.push_back(n%2);n/=2;
}
int len=num.size();
ll ans=1;
//从1-len个1枚举
for(int i=1;i<=len;i++){
//先枚举小于len位的
for(int j=1;j<len;j++)
ans=(ans*(qpow(i,f[j][1][i])%MOD))%MOD;
//直接从len-1位开始枚举
int t=i-1;//定义有几个1
for(int j=len-2;j>=0;j--){
if(num[j]){
ans=(ans*(qpow(i,f[j+1][0][t])%MOD))%MOD;
t--;
}
if(t<0) break;
}
}
return ans;
}
int main(){
init();
cin>>r;
cout<<sum(r)*dp(r)%MOD;
}