解决约束多目标优化问题的双种群辅助协同进化算法
1. 引言
约束多目标优化问题(Constrained Multi-Objective Optimization Problems, CMOPs)广泛存在于工程设计、交通调度、资源分配等领域。这类问题不仅要求优化多个目标函数,还需满足复杂的约束条件。传统进化算法在处理CMOPs时,面临收敛性、多样性和可行性难以平衡的挑战,尤其是在处理具有大不可行区域和不连续小可行区域的问题时表现欠佳。
2. 问题定义与挑战
2.1 CMOPs的数学表述
CMOPs的一般形式为:
min
f
(
x
)
=
(
f
1
(
x
)
,
f
2
(
x
)
,
…
,
f
M
(
x
)
)
s.t.
g
i
(
x
)
≤
0
,
i
=
1
,
2
,
…
,
p
h
i
(
x
)
=
0
,
i
=
p
+
1
,
…
,
n
x
=
(
x
1
,
x
2
,
…
,
x
D
)
T
∈
R
D
\begin{aligned} \min \quad & f(x) = (f_1(x), f_2(x), \dots, f_M(x)) \\ \text{s.t.} \quad & g_i(x) \leq 0, \quad i = 1, 2, \dots, p \\ & h_i(x) = 0, \quad i = p+1, \dots, n \\ & x = (x_1, x_2, \dots, x_D)^T \in \mathbb{R}^D \end{aligned}
mins.t.f(x)=(f1(x),f2(x),…,fM(x))gi(x)≤0,i=1,2,…,phi(x)=0,i=p+1,…,nx=(x1,x2,…,xD)T∈RD
其中,
f
(
x
)
f(x)
f(x) 是目标函数,
g
i
(
x
)
g_i(x)
gi(x) 和
h
i
(
x
)
h_i(x)
hi(x) 分别为不等式和等式约束,
x
x
x 是D维决策变量。
2.2 约束违反值计算
为量化约束违反程度,将等式约束转换为不等式约束:
∣
h
i
(
x
)
∣
−
δ
≤
0
,
i
=
p
+
1
,
…
,
n
|h_i(x)| - \delta \leq 0, \quad i = p+1, \dots, n
∣hi(x)∣−δ≤0,i=p+1,…,n
定义单个约束的违反值:
C
V
i
(
x
)
=
{
max
(
0
,
g
i
(
x
)
)
,
1
≤
i
≤
p
max
(
0
,
∣
h
i
(
x
)
∣
−
δ
)
,
p
+
1
≤
i
≤
n
CV_i(x) = \begin{cases} \max(0, g_i(x)), & 1 \leq i \leq p \\ \max(0, |h_i(x)| - \delta), & p+1 \leq i \leq n \end{cases}
CVi(x)={max(0,gi(x)),max(0,∣hi(x)∣−δ),1≤i≤pp+1≤i≤n
总约束违反值为:
C
V
(
x
)
=
∑
i
=
1
n
C
V
i
(
x
)
CV(x) = \sum_{i=1}^n CV_i(x)
CV(x)=i=1∑nCVi(x)
当
C
V
(
x
)
=
0
CV(x) = 0
CV(x)=0 时,解
x
x
x 为可行解。
3. DAEAEO算法框架
针对CMOPs的挑战,文献提出了一种双种群辅助多目标协同进化算法(Dual-population Auxiliary Multiobjective Coevolutionary Algorithm with Enhanced Operator, DAEAEO)。其核心思想是通过双种群协同进化、增强搜索算子和知识交互策略,平衡收敛性、多样性和可行性。
3.1 算法整体流程
- 初始化:随机生成主种群 P P P 和两个辅助种群 P 1 P_1 P1、 P 2 P_2 P2。
- 生成后代:
- 主种群和辅助种群分别通过增强算子和遗传算子生成后代。
- 增强算子基于竞争群体优化(CSO),分为“胜者”和“败者”,通过不同策略更新以平衡收敛与多样性。
- 环境选择:
- P 1 P_1 P1 使用改进的ε-约束方法筛选高质量可行解。
- P 2 P_2 P2 使用非支配排序方法保留具有良好目标信息的解。
- 主种群通过约束主导原则(CDP)选择最终解。
3.2 增强算子(Enhanced Operator)
增强算子的核心是通过竞争机制更新种群:
- 配对竞争:将种群个体两两配对,根据适应度分为“胜者” P w i n n e r P_{winner} Pwinner 和“败者” P l o s e r P_{loser} Ploser。
- 败者更新:败者通过学习胜者位置更新自身:
V l o s e r t + 1 = R 1 V l o s e r t + R 2 ( X w i n n e r t − X l o s e r t ) V_{loser}^{t+1} = R_1 V_{loser}^t + R_2 (X_{winner}^t - X_{loser}^t) Vlosert+1=R1Vlosert+R2(Xwinnert−Xlosert)
X l o s e r t + 1 = X l o s e r t + V l o s e r t + 1 X_{loser}^{t+1} = X_{loser}^t + V_{loser}^{t+1} Xlosert+1=Xlosert+Vlosert+1
其中, R 1 , R 2 ∼ U ( 0 , 1 ) R_1, R_2 \sim U(0, 1) R1,R2∼U(0,1)。 - 胜者更新:胜者进一步学习精英和随机个体:
V w i n n e r t + 1 = R 1 V w i n n e r t + R 2 ( X p e t − X w i n n e r t ) + R 3 ( X p r t − X w i n n e r t ) V_{winner}^{t+1} = R_1 V_{winner}^t + R_2 (X_{pe}^t - X_{winner}^t) + R_3 (X_{pr}^t - X_{winner}^t) Vwinnert+1=R1Vwinnert+R2(Xpet−Xwinnert)+R3(Xprt−Xwinnert)
X w i n n e r t + 1 = X w i n n e r t + V w i n n e r t + 1 X_{winner}^{t+1} = X_{winner}^t + V_{winner}^{t+1} Xwinnert+1=Xwinnert+Vwinnert+1
其中, X p e X_{pe} Xpe 是精英个体, X p r X_{pr} Xpr 是随机个体, R 3 ∼ U ( 0 , 1 ) R_3 \sim U(0, 1) R3∼U(0,1)。
3.3 双种群辅助策略
- 辅助种群1(改进ε-约束):
- 动态调整约束边界ε,早期允许较大ε以探索目标空间,后期缩小ε以逼近可行区域。
- ε的更新公式为:
ε = ε 0 ⋅ e − λ ⋅ ( t T ) ρ \varepsilon = \varepsilon_0 \cdot e^{-\lambda \cdot \left( \frac{t}{T} \right)^\rho} ε=ε0⋅e−λ⋅(Tt)ρ
其中, λ = 6 \lambda=6 λ=6, ρ = 0.5 \rho=0.5 ρ=0.5, t t t 为当前迭代次数, T T T 为最大迭代次数。
- 辅助种群2(非支配排序):
- 对不可行解进行非支配排序,保留前沿解以提供目标空间信息。
3.4 信息交互策略
通过合并主种群和辅助种群的后代,促进不同种群间的知识传递,增强全局搜索能力。
4. 实验验证
文献在多个基准测试集(DAS-CMOPs、LIR-CMOPs、DOC)和实际工程问题(散货船设计、反应器网络设计)上验证了DAEAEO的性能。结果表明,DAEAEO在收敛性、多样性和可行性上均优于NSGA-II-CDP、BiCo、ToP等6种先进算法。
4.1 性能指标
- 倒置世代距离(IGD):衡量解与真实Pareto前沿的距离。
- 超体积(HV):评估解的覆盖范围和多样性。
4.2 关键结果
- 在LIR-CMOPs(大不可行区域)和DAS-CMOPs(复杂约束)上,DAEAEO的IGD和HV指标显著优于对比算法。
- 实际工程问题中,DAEAEO在可行解获取和多目标平衡上表现出色。
5. 总结与展望
DAEAEO通过双种群协同、增强搜索算子和动态约束处理,有效解决了CMOPs中的复杂约束问题。未来可进一步探索新的搜索算子和约束处理技术,以提升算法在高维、多目标场景下的性能。
参考文献
[1] He Z, Liu H. A dual-population auxiliary multiobjective coevolutionary algorithm for constrained multiobjective optimization problems[J]. Applied Soft Computing, 2024, 163: 111827.