常见权重计算方法全解析

常见权重计算方法全解析

在数据分析、综合评价、决策制定等众多领域中,权重计算是一项关键技术,它能够帮助我们合理地衡量各个因素在整体中的相对重要性。本文将全面介绍多种常见的权重计算方法,包括主观赋权法、客观赋权法、基于数据降维与信息浓缩的方法以及综合评价类方法,并详细阐述它们的计算公式与应用场景。

一、主观赋权法

AHP 层次分析法(Analytic Hierarchy Process)

简介:由美国运筹学家萨蒂(T. L. Saaty)在 20 世纪 70 年代初提出,是一种将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础上进行定性和定量分析的决策方法。该方法把复杂问题分解为多个层次,通过专家经验进行主观判断,把定性与定量分析相结合。

计算公式

构建判断矩阵:设准则层有 n n n 个因素,通过两两比较确定它们相对重要性的标度 a i j a_{ij} aij,构成判断矩阵 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n a i j a_{ij} aij 表示因素 i i i 相对于因素 j j j 的重要性程度,通常采用 1 - 9 标度法,1 表示两者同等重要,3 表示前者比后者稍微重要,5 表示前者比后者明显重要,7 表示前者比后者强烈重要,9 表示前者比后者极端重要,2、4、6、8 为上述判断的中间值,且 a i j = 1 a j i a_{ij}=\frac{1}{a_{ji}} aij=aji1

计算特征向量:求解判断矩阵 A A A 的最大特征根 λ m a x \lambda_{max} λmax 及其对应的特征向量 W W W,对特征向量进行归一化处理得到权重向量 ω \omega ω,即 ω i = W i ∑ j = 1 n W j \omega_i=\frac{W_i}{\sum_{j = 1}^{n}W_j} ωi=j=1nWjWi i = 1 , 2 , ⋯   , n i = 1,2,\cdots,n i=1,2,,n。计算特征向量可使用方根法、和积法等方法,以方根法为例,先计算判断矩阵每行元素的乘积 M i = ∏ j = 1 n a i j M_i=\prod_{j = 1}^{n}a_{ij} Mi=j=1naij,再计算 M i M_i Mi n n n 次方根 W ‾ i = M i n \overline{W}_i=\sqrt[n]{M_i} Wi=nMi ,最后对 W ‾ i \overline{W}_i Wi 进行归一化处理得到 ω i \omega_i ωi

一致性检验:计算一致性指标 C I = λ m a x − n n − 1 CI=\frac{\lambda_{max}-n}{n - 1} CI=n1λmaxn,平均随机一致性指标 R I RI RI(可通过查表得到,不同阶数的判断矩阵对应不同的 R I RI RI 值),一致性比率 C R = C I R I CR=\frac{CI}{RI} CR=RICI。当 C R < 0.1 CR<0.1 CR<0.1 时,认为判断矩阵具有满意的一致性,否则需要重新调整判断矩阵。

应用场景:适用于难以完全用定量方法解决的问题,如评价指标体系的权重确定,像在城市宜居性评价中确定环境、交通、教育等因素的权重。

优缺点:优点是系统性强,能将复杂问题条理化;缺点是主观性较强,判断矩阵的构建依赖专家的知识和经验,不同专家可能给出不同结果。

二、客观赋权法

熵值法(Entropy Method)

简介:根据指标数据的变异程度来确定权重,源于信息论中熵的概念,信息熵是对信息不确定性的度量。

计算公式

数据标准化:设原始数据矩阵为 X = ( x i j ) m × n X=(x_{ij})_{m\times n} X=(xij)m×n,其中 m m m 为样本数, n n n 为指标数。采用不同的标准化公式将数据进行无量纲化处理,得到标准化矩阵 Y = ( y i j ) m × n Y=(y_{ij})_{m\times n} Y=(yij)m×n。对于正向指标, y i j = x i j − min ⁡ ( x j ) max ⁡ ( x j ) − min ⁡ ( x j ) y_{ij}=\frac{x_{ij}-\min(x_j)}{\max(x_j)-\min(x_j)} yij=max(xj)min(xj)xijmin(xj);对于逆向指标, y i j = max ⁡ ( x j ) − x i j max ⁡ ( x j ) − min ⁡ ( x j ) y_{ij}=\frac{\max(x_j)-x_{ij}}{\max(x_j)-\min(x_j)} yij=max(xj)min(xj)max(xj)xij

计算第 **** **** 项指标下第 **** **** 个样本值的比重 p i j = y i j ∑ i = 1 m y i j p_{ij}=\frac{y_{ij}}{\sum_{i = 1}^{m}y_{ij}} pij=i=1my

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值