突破局部最优!融合独立思维与局部逃逸的头脑风暴优化算法解析

突破局部最优!融合独立思维与局部逃逸的头脑风暴优化算法解析

1. 引言

在工程优化、机器学习等领域,如何高效求解复杂问题一直是研究热点。传统的头脑风暴优化算法(BSO)虽然模拟人类思维过程,但存在收敛精度低、易陷入局部最优等问题。为解决这些痛点,《融合独立思维与局部逃逸的头脑风暴优化算法》提出了一种改进算法(IBSO),通过引入独立思维策略和局部逃逸算子,显著提升了算法的全局搜索能力和稳定性。

2. 传统BSO算法的局限性

BSO算法通过k-means聚类分组,模拟群体讨论生成新解,但存在以下问题:

  1. 依赖初始解:新解生成基于已有解的交叉变异,易陷入局部最优。
  2. 探索能力不足:缺乏跳出局部区域的有效机制,导致收敛精度受限。

3. IBSO算法核心改进

3.1 独立思维策略

  • 阈值判断:引入阈值 threshold 判断是否陷入停滞:
    threshold = ln ⁡ ( F E s ) × ( 2 × F E s MaxFEs ) × cos ⁡ ( rand × 9 0 ∘ ) \text{threshold} = \ln(FEs) \times \left(\frac{2 \times FEs}{\text{MaxFEs}}\right) \times \cos(\text{rand} \times 90^\circ) threshold=ln(FEs)×(MaxFEs2×FEs)×cos(rand×90)
    当实验算子 c 超过阈值时,触发独立思维。
  • Levy飞行扰动:利用Levy飞行的长距离跳跃特性生成随机解:
    X r = X best − levy ( d i m ) × ( X best − X rand ) X_r = X_{\text{best}} - \text{levy}(dim) \times (X_{\text{best}} - X_{\text{rand}}) Xr=Xbestlevy(dim)×(XbestXrand)
    其中,levy 服从Levy分布,X_{\text{best}} 为当前最优解,X_{\text{rand}} 为随机个体。
  • 新解融合:将随机解与原解结合:
    X p = w × X new + ( 1 − w ) × X r X_p = w \times X_{\text{new}} + (1-w) \times X_r Xp=w×Xnew+(1w)×Xr

3.2 局部逃逸策略(LEO)

  • 代表性个体选取:包括最优个体、平均值、随机个体等。
  • 新解生成
    G X new = G X best + N ( 0 , ( 1 − F E s MaxFEs ) ) × ( G X best − G X avg ) GX_{\text{new}} = GX_{\text{best}} + N\left(0, \left(1-\frac{FEs}{\text{MaxFEs}}\right)\right) \times (GX_{\text{best}} - GX_{\text{avg}}) GXnew=GXbest+N(0,(1MaxFEsFEs))×(GXbestGXavg)
    其中,N 为正态分布,GX_{\text{avg}} 为种群平均值。
  • 辅助个体增强:通过辅助个体 GX_h^1GX_h^2 扩大搜索范围:
    G X h 1 = G X best + N ( 0 , ( 1 − F E s MaxFEs ) ) × ( G X best − G X best rep ) G X h 2 = G X best + N ( 0 , ( 1 − F E s MaxFEs ) ) × ( G X best − G X worst rep ) \begin{aligned} GX_h^1 &= GX_{\text{best}} + N\left(0, \left(1-\frac{FEs}{\text{MaxFEs}}\right)\right) \times (GX_{\text{best}} - GX_{\text{best}}^{\text{rep}}) \\ GX_h^2 &= GX_{\text{best}} + N\left(0, \left(1-\frac{FEs}{\text{MaxFEs}}\right)\right) \times (GX_{\text{best}} - GX_{\text{worst}}^{\text{rep}}) \end{aligned} GXh1GXh2=GXbest+N(0,(1MaxFEsFEs))×(GXbestGXbestrep)=GXbest+N(0,(1MaxFEsFEs))×(GXbestGXworstrep)
    在这里插入图片描述

4. 算法流程

  1. 初始化种群:随机生成初始解。
  2. 聚类与更新:通过k-means聚类分组,生成新解。
  3. 独立思维触发:判断是否触发独立思维,生成新解。
  4. 局部逃逸增强:利用LEO生成新解,更新种群。
  5. 终止条件:达到最大迭代次数后输出最优解。
    在这里插入图片描述

5. 实验验证

5.1 基准测试

  • 测试函数:CEC2014(30个函数)和CEC2020(10个函数)。
  • 对比算法:BSO、ROA、HHO、DE等8种算法。
  • 结果:IBSO在多数函数上的平均值和标准差优于对比算法。例如:
    • CEC20-1:IBSO的平均适应度值为 2.18E+04,标准差 2.84E+04,优于BSO的 3.15E+074.98E+06
    • CEC14-1:IBSO的平均适应度值为 4.95E+07,标准差 1.12E+07,显著优于BSO的 7.01E+071.37E+07

5.2 工程应用

  • 三杆桁架设计:IBSO的平均重量为 263.9005,优于BSO的 263.9851
  • 拉伸/压缩弹簧设计:IBSO的平均质量为 0.0132,优于BSO的 0.0135

6. 结论

IBSO算法通过独立思维策略和局部逃逸算子,有效平衡了全局探索与局部开发,在基准测试和工程问题中均表现出优异性能。该研究为群智能优化算法提供了新的思路,未来可进一步探索其在无人机路径规划、遥感图像分割等领域的应用。

参考文献

[1] 贾鹤鸣, 饶洪华, 吴迪, 等. 融合独立思维与局部逃逸的头脑风暴优化算法[J]. 计算机科学与探索, 2024.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值