二次函数的三角形存在性问题

数学不好,真不好。 

等腰三角形的存在性问题

有两定点A,B,求一点C,使得\Delta ABC为等腰三角形。

几何方法

分三种情况。

  • 以A为顶点,AB为腰:以A为圆心,AB为半径的圆上,除过线段AB的点以外都是C的解。(图上红色的部分)
  • 以A为顶点,AB为腰:以A为圆心,AB为半径的圆上,除过线段AB的点以外都是C的解。(图上蓝色的部分)
  • 以C为顶点,AB为底:作AB的中垂线,除过线段AB的点以外都是C的解。(图上绿色的部分)

综上,C的解集为:

  

红+蓝+绿(不在AB上的部分)。

求解方法

两点之间距离公式。(两等边等长)

AB= \sqrt{(x_A-x_B)^2+(y_A-y_B)^2}(勾股定理)

AB^2=(x_A-x_B)^2+(y_A-y_B)^2(为方便计算)

一样的,红、蓝、绿三类解分三种情况讨论。

设在\Delta ABC中,A(x_1,y_1),B(x_2,y_2),C(x_3,y_3)

AB=AC(红色)

(x_1-x_2)^2+(y_1-y_2)^2=(x_1-x_3)^2+(y_1-y_3)^2

AB=BC(蓝色)

(x_1-x_2)^2+(y_1-y_2)^2=(x_2-x_3)^2+(y_2-y_3)^2

AC=BC(绿色)

(x_1-x_3)^2+(y_1-y_3)^2=(x_2-x_3)^2+(y_2-y_3)^2

直角三角形的存在性问题

几何方法

有两定点A,B,求一点C,使得\Delta ABC为直角三角形。

  • \angle A=90^{ \circ }:过A点\perpAB的直线。(红)
  • \angle B=90^{\circ}:过B点\perpAB的直线。(蓝)
  • \angle C=90^{\circ}:以AB为直径的圆。(绿)

 解集:红+蓝+绿(不在直线AB上的部分)

求解方法

垂直斜率乘积为-1。

k=\frac{y_2-y_1}{x_2-x_1}(斜率公式)

设在\Delta ABC中,A(x_1,y_1),B(x_2,y_2),C(x_3,y_3)

AB\perpAC(红)

\frac{x_2-x_1}{y_2-y_1}=-\frac{y_3-y_1}{x_3-x_1}

AB\perpBC(蓝)

\frac{x_2-x_1}{y_2-y_1}=-\frac{y_3-y_2}{x_3-x_2}

AC\perpBC(绿)

 \frac{x_3-x_1}{y_3-y_1}=-\frac{y_3-y_2}{x_3-x_2}

等腰直角三角形的存在性问题

因为不常考,就不详细讲了。

一共六个解。

几何方法

求解方法

联立对应的两个前文所述方程即可。


我的第二篇whk博客!

稍后会更新四边形存在性问题哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值