北航线性系统-高庆

今天记录13周高庆老师的线性系统课程

每次开始前都先讲解上周题目

1.题目

题目后面补充

1.1

1.2

2.课程

2.1 Schur complement

2.2 T-S模糊模型

2.3 D-T T-S 模糊模型

x(k+1)=\sum \mu_{i}(x(k))A_{i}x(k)+Bu(k)

u(k)=kx(k)

原式为

x(k+1)=\sum \mu_{i}(x(k))(A_{i}+Bk)x(k)

V(x)=x^{T}Px

V(x(k+1))-V(x(k))<0

(A_{i}+Bk)^{T}P(A+B_{i}k)-P<0

Q(A_{i}+Bk)^{T}Q^{-1}(A_{i}+Bk)-Q<0

\begin{bmatrix} Q&Q ( A_{i}+ Bk_{i})^{T} \\ ( A_{i}+ Bk_{i})Q& Q \end{bmatrix}>0

u(k)=\sum \mu_{i}(k) k_{i}x(k)

原式为

x(k+1)=\sum \mu_{i}(A_{i}+Bk_{i})x(k_{i})

运算和上面类似,最后得到

\begin{bmatrix} Q&* \\ ( A_{i}+ Bk_{i})Q& Q \end{bmatrix}>0

当...

老师画的图没懂,后面再来补充,这里用到2.4Lyapunox函数

同样也不知道老师在说什么,后面懂了再来补充

2.4 Lyapunox函数

V(x)=\left\{\begin{matrix} x^{T}p_{1}x ...& x^{T}p_{2}x... & x^{T}p_{3}x ...\end{matrix}\right.

V(k+1)-V(k)=\left\{\begin{matrix} ...&... &... \end{matrix}\right.

2.5 不确定性系统

x(k+1)=(A+\Delta A)x+(B+\Delta B)u

\dot{x}(t)=(A+\Delta A)x(t)+Bu(t)

u(t)=kx(t)

3.下周的作业

3.1

假设

x(k+1)=\sum \mu _{i}A_{i}x(k_{i})

可以分段描述为

x(k+1)=\left\{\begin{matrix} A_{1}x(k) x\in \Omega _{1}&\mu _{1}A_{1}x(k)+\mu _{2}A_{2}x(k) x\in \Omega _{2} &A_{3}x(k) x\in \Omega _{3} &\mu _{2}A_{2}x(k)+\mu _{3}A_{3}x(k) x\in \Omega _{4} & A_{5}x(k) x\in \Omega _{5} \end{matrix}\right.

选择Lyapunox函数给出系统稳定性判据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值