题目
一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在每次预约服务之间要有休息时间,因此她不能接受相邻的预约。给定一个预约请求序列,替按摩师找到最优的预约集合(总预约时间最长),返回总的分钟数。
注意:本题相对原题稍作改动
示例 1:
输入: [1,2,3,1]
输出: 4
解释: 选择 1 号预约和 3 号预约,总时长 = 1 + 3 = 4。
示例 2:
输入: [2,7,9,3,1]
输出: 12
解释: 选择 1 号预约、 3 号预约和 5 号预约,总时长 = 2 + 9 + 1 = 12。
示例 3:
输入: [2,1,4,5,3,1,1,3]
输出: 12
解释: 选择 1 号预约、 3 号预约、 5 号预约和 8 号预约,总时长 = 2 + 4 + 3 + 3 = 12。
思路–动态规划
- 依旧是后方数据的选择依赖前方数据的值,选择动态规划解题
- 本题中新建dp表,dp[i]表示,到达i位置时,此时的最长预约时长
- 到达i位置,又可以分为两种情况,f[i]表示选择i位置的预约,即接受nums[i]的预约;g[i]表示不选择i位置的预约,即拒绝nums[i]的预约
- 题目中要求不能接受相邻的预约,当接受了i位置的预约时(即nums[i]),那么i - 1位置的预约(即g[i - 1])就必须拒绝。则有f[i] = g[i - 1] + nums[i]
- 当不接收i位置的预约时,i - 1位置的预约可以接受(即f[i - 1])也可以拒绝(即g[i - 1]),取决于这两种情况下的最大预约时长。则有g[i] = Math.max(g[i - 1],f[i - 1])
- 初始化,保证数组不越界和后面数据正确。只需要确定0位置的值,后续根据状态转移方程填表即可
- 填表顺序:从左往右g[i]、f[i] 同时填
- 返回值:dp[i] = Math.max(g[n - 1],f[n - 1]),n表示nums数组的长度
代码
public int massage(int[] nums) {
int n = nums.length;
int[] f = new int[n]; //1.新建两个dp表 f[i]表示i位置接受预约
int[] g = new int[n]; // g[i]表示i位置不接受预约
if(n == 0) return 0; //2.初始化
f[0] = nums[0]; //g[0]默认值为0
for(int i = 1;i < n;i ++){ //3.填表
g[i] = Math.max(f[i - 1],g[i - 1]);
f[i] = g[i - 1] + nums[i];
}
return Math.max(g[n - 1],f[n - 1]); //4.确定返回值
}