C语言刷题之动态规划入门(一)

目录

1.动态规划算法

2.跳跃游戏(一)

        1.题目

        2.初步分析

        3.代码实现

3.跳跃游戏(二)

        1.题目

        2.初步分析

        3.代码实现


1.动态规划算法

        动态规划(英语:Dynamic programming,简称 DP),是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用于有重叠子问题最优子结构性质的问题。

简单来说,动态规划就是把给定的问题拆分成一个个子问题,直到子问题可以直接解决,和递归不同的是,动态规划可以将子问题的答案储存起来,减少重复计算,大大减少了时间复杂度。

        下面我们通过两个简单的例题来步入动态规划的大门!

2.跳跃游戏(一)

        1.题目

描述

给定一个非负整数数组nums,假定最开始处于下标为0的位置,数组里面的每个元素代表下一跳能够跳跃的最大长度。如果能够跳到数组最后一个位置,则输出true,否则输出false。

输入描述:

第一行输入一个正整数 n ,表示数组 nums 的长度

第二行输入 n 个整数表示数组的每个元素

输出描述:

输出 true 或者 false 


         2.初步分析

        首先,我们可以发现,本道题具有重叠子问题的特点。要求是否能跳到第n格,可以先将其拆分成能否跳到第n-1格,第n-2格...第1格多个子问题,通过求出一步步求出子问题的答案,如果子问题都成立,原问题是否成立就迎刃而解了。

我的思路是:创建一个变量k存储能跳跃的最大距离自下而上遍历整个数组,不断的更新k的值,当遍历num[i]的过程中,如果i始终小于等于k,即所有子问题都成立,如果出现i>k的情况,则子问题不成立,原问题也就输出false,主要代码如下:


         3.代码实现

#include<stdio.h>
#include<stdlib.h>
int main() {
	int n = 0;
	int i = 0;
	scanf("%d", &n);
    //动态开辟num数组
	int* num = (int*)malloc(n * sizeof(int));
	for (int i = 0; i < n; i++)
	{
		scanf("%d", &num[i]);
	}
	int k = 0;                 //表示能走的最大距离
	for (i = 0; i < n; i++)    //自下而上遍历
	{
		if (i > k)             //即走不到第i格,子问题不成立
		{
			printf("false");
			break;
		}
		k = k > (i + num[i]) ? k:(i+num[i]);     //更新k的值
	}
	if (i == n)                //子问题都成立,且可以走到最后一个
	{
		printf("true");
	}
    free(num);
	return 0;
}

3.跳跃游戏(二)

        1.题目

描述

给定一个非负整数数组nums,假定最开始处于下标为0的位置,数组里面的每个元素代表下一跳能够跳跃的最大长度,如果可以跳到数组最后一个位置,请你求出跳跃路径中所能获得的最多的积分。

1.如果能够跳到数组最后一个位置,才能计算所获得的积分,否则积分值为-1

2.如果无法跳跃(即数组长度为0),也请返回-1

3.数据保证返回的结果不会超过整形范围,即不会超过2^{31}-1231−1

输入描述:

第一行输入一个正整数 n 表示数组 nums的长度

第二行输入 n 个整数,表示数组 nums 的所有元素的值

输出描述:

输出能获得的最多的积分


        2.初步分析

        这题在上一道题的基础上增加了求最高积分的条件,因此,不仅拥有重叠子问题的特点,还有最优子结构的特点。我们可以发现跳到第i格的最高积分一定是可以跳到第i格的最近格子跳上来的。因此我们可以在上一题的遍历中进行扩展,增加一个循环来求出到这个子问题的最多积分。

我的思路是:在自下而上的遍历整个数组时,增加一个循环自上而下遍历,如果遇到num[j]+j>=i,就代表这是可以跳到i的最近格子(其中i代表第i个格子,j代表0-i中的中的一个格子)。而利用动态规划的思想,我们可以创建一个一维数组dp存储跳到每一格的最大积分,最终一步步求出跳到第n格的最大积分。主要代码如下:


         3.代码实现

#include <stdio.h>
#include<stdlib.h>
int max(int x, int y)       //返回可达到最大距离函数
{
	return x > y ? x : y;
}
int main()
{
	int n = 0;          //代表格数
    int i = 0;          //用于循环遍历
    int k = 0;          //表示最大跳跃距离
	scanf("%d", &n);
	int* num = (int*)malloc(n * sizeof(int));
	int* dp = (int*)malloc(n * sizeof(int));        //存储每个子问题即跳到第i格的最大积分
	for (i = 0; i < n; i++)
	{
		scanf("%d", &num[i]);
	}
	dp[0] = num[0];                         //赋初值,跳到第1格的最大积分即为自身
	if (n == 0)                             //空数组
	{
		printf("-1\n");
		return 0;
	}
	if (n == 1)                             //只有一个格子,最大积分即为自身
	{
		printf("%d\n", dp[0]);
		return 0;
	}
	for (i = 0; i < n; i++)                 //自下而上遍历,寻找最大距离
	{
		if (i <= k)                         //子问题成立
		{
			int j = 0;
            k = max(k, i + num[i]);         //更新最大距离
			for (j = i - 1; j >= 0; j--)    //自上而下,求出子问题的最大积分
			{
				if (j + num[j] >= i)        //找到可跳到i最近的格子j
				{
					dp[i] = dp[j] + num[i]; //第i格的最大积分即为j的最大积分加上num[i]
					break;
				}
			}
		}
		else                                //子问题不成立,无法跳到第i格
		{
			printf("-1\n");
			return 0;
		}
	}
	printf("%d", dp[n - 1]);                //所有子问题均成立,则到终点最大积分就为dp的最后 
                                            //一个元素
	free(num);
	free(dp);
	return 0;
}

以上,就是动态规划入门刷题(一)的全部内容。

制作不易,能否点个赞再走呢qwq

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

忆梦初心

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值