跳跃游戏(Jump Game)是一道经典的贪心算法和动态规划问题,旨在判断是否可以通过跳跃从数组的起始位置到达数组的末尾。该问题有两种常见的形式:跳跃游戏 I 和跳跃游戏 II。
1. 跳跃游戏 I 问题描述
给定一个非负整数数组 nums
,数组中的每个元素表示在该位置最多可以跳跃的步数。起始位置在数组的第一个元素处。你的任务是判断是否可以通过跳跃到达数组的最后一个位置。
示例:
-
输入:
nums = [2, 3, 1, 1, 4]
-
输出:
true
-
解释:我们可以先跳 1 步,从位置 0 到 位置 1,然后跳 3 步到达最后一个位置。
-
输入:
nums = [3, 2, 1, 0, 4]
-
输出:
false
-
解释:无论如何你都无法越过索引 3 处的 0,因此无法到达最后一个位置。
2. 跳跃游戏 I 的解题思路
该问题可以通过贪心算法或动态规划来求解。我们尝试寻找每一步可以跳到的最远距离,以确定是否能够到达数组末尾。
贪心算法思路:
- 定义一个变量
farthest
,表示能够跳到的最远位置。 - 遍历数组中的每个元素,逐步更新
farthest
,即每次都更新当前位置能够跳到的最远位置。 - 如果在遍历过程中,发现当前位置已经超过
farthest
,则无法到达末尾,返回false
。 - 如果遍历到数组末尾或更远,说明可以到达末尾,返回
true
。
3. 贪心算法的实现
下面是跳跃游戏 I 的贪心算法 Java 实现:
public class JumpGame {
public boolean canJump(int[] nums) {
int farthest = 0; // 表示能够跳到的最远距离
// 遍历数组
for (int i = 0; i < nums.length; i++) {
// 如果当前位置已经超过了之前能够跳到的最远距离,则返回 false
if (i > farthest) {
return false;
}
// 更新能够跳到的最远距离
farthest = Math.max(farthest, i + nums[i]);
}
return true; // 能够到达最后一个位置
}
public static void main(String[] args) {
JumpGame game = new JumpGame();
int[] nums = {2, 3, 1, 1, 4};
System.out.println("Can jump to the end: " + game.canJump(nums)); // 输出 true
int[] nums2 = {3, 2, 1, 0, 4};
System.out.println("Can jump to the end: " + game.canJump(nums2)); // 输出 false
}
}
4. 代码详解
4.1 输入与输出
- 输入:一个非负整数数组
nums[]
,每个元素表示在该位置最多可以跳跃的步数。 - 输出:返回
true
或false
,表示是否可以跳跃到达数组的最后一个位置。
4.2 关键步骤
- 初始化:定义一个变量
farthest
,用于记录当前可以跳到的最远位置,初始值为 0。 - 遍历数组:从第一个元素开始逐步更新最远可到达的位置。
- 每次遍历时,判断当前位置
i
是否可以被访问。如果当前位置已经超出farthest
,则说明无法到达该位置,返回false
。 - 每次更新
farthest
为当前位置i
能够跳到的最远位置i + nums[i]
。
- 每次遍历时,判断当前位置
- 判断结果:如果遍历完数组,
farthest
大于或等于数组最后一个位置的索引,则返回true
。
4.3 时间复杂度和空间复杂度
- 时间复杂度:
O(n)
,我们只需要遍历一次数组。 - 空间复杂度:
O(1)
,只使用了常量级的额外空间。
5. 跳跃游戏 II 问题描述
跳跃游戏 II 是跳跃游戏的升级版,要求找出到达数组末尾的最小跳跃次数。
示例:
- 输入:
nums = [2, 3, 1, 1, 4]
- 输出:
2
- 解释:我们可以先跳 1 步到达位置 1,然后再跳 3 步到达最后一个位置。
6. 跳跃游戏 II 的解题思路
为了在最少跳跃次数下到达数组末尾,我们需要跟踪每次跳跃的最远位置,同时确定何时进行下一次跳跃。
贪心算法思路:
- 定义变量
jumps
记录跳跃次数,end
记录当前跳跃的边界,farthest
记录能够跳到的最远位置。 - 遍历数组,如果当前索引超过了
end
,则进行一次跳跃,跳跃的边界更新为farthest
,同时增加跳跃次数。 - 重复该过程直到遍历完整个数组。
7. 贪心算法的实现
下面是跳跃游戏 II 的贪心算法 Java 实现:
public class JumpGameII {
public int jump(int[] nums) {
int jumps = 0; // 跳跃次数
int farthest = 0; // 能够跳到的最远距离
int end = 0; // 当前跳跃的边界
for (int i = 0; i < nums.length - 1; i++) {
// 更新能够跳到的最远距离
farthest = Math.max(farthest, i + nums[i]);
// 当到达当前跳跃边界时,进行跳跃
if (i == end) {
jumps++;
end = farthest; // 更新跳跃的边界
// 如果当前边界已经到达或超过最后一个元素,结束循环
if (end >= nums.length - 1) {
break;
}
}
}
return jumps; // 返回跳跃次数
}
public static void main(String[] args) {
JumpGameII game = new JumpGameII();
int[] nums = {2, 3, 1, 1, 4};
System.out.println("Minimum jumps: " + game.jump(nums)); // 输出 2
}
}
8. 代码详解
8.1 输入与输出
- 输入:一个非负整数数组
nums[]
,每个元素表示在该位置最多可以跳跃的步数。 - 输出:返回到达数组末尾的最小跳跃次数。
8.2 关键步骤
- 初始化:定义变量
jumps
表示跳跃次数,farthest
表示可以跳到的最远位置,end
表示当前跳跃的边界。 - 遍历数组:每次更新最远可跳到的位置
farthest
,如果当前索引达到边界end
,说明需要进行一次跳跃,跳跃次数jumps
加 1,更新边界end
为farthest
。 - 判断结束:当边界达到或超过数组的最后一个位置时,结束循环并返回跳跃次数。
8.3 时间复杂度和空间复杂度
- 时间复杂度:
O(n)
,因为我们只遍历一次数组。 - 空间复杂度:
O(1)
,只使用了常量级的额外空间。
9. 举例说明
跳跃游戏 I:
对于数组 nums = [2, 3, 1, 1, 4]
,可以通过以下步骤跳跃到末尾:
- 从位置 0 跳 1 步到位置 1。
- 从位置 1 跳 3 步到达数组末尾。
跳跃游戏 II:
对于相同的数组 nums = [2, 3, 1, 1, 4]
,最小跳跃次数是 2:
- 从位置 0 跳 1 步到达位置 1。
- 从位置 1 跳 3 步到达末尾。
10. 总结
跳跃游戏是一个关于数组跳跃的经典问题,有多种变体。跳跃游戏 I 主要判断是否能够到达末尾,而跳跃游戏 II 则要求计算最少跳跃次数。两者都可以通过贪心算法来高效求解。