动态规划算法贪心算法之跳跃游戏详细解读(附带Java代码解读)

跳跃游戏(Jump Game)是一道经典的贪心算法和动态规划问题,旨在判断是否可以通过跳跃从数组的起始位置到达数组的末尾。该问题有两种常见的形式:跳跃游戏 I 和跳跃游戏 II。

1. 跳跃游戏 I 问题描述

给定一个非负整数数组 nums,数组中的每个元素表示在该位置最多可以跳跃的步数。起始位置在数组的第一个元素处。你的任务是判断是否可以通过跳跃到达数组的最后一个位置。

示例:
  • 输入:nums = [2, 3, 1, 1, 4]

  • 输出:true

  • 解释:我们可以先跳 1 步,从位置 0 到 位置 1,然后跳 3 步到达最后一个位置。

  • 输入:nums = [3, 2, 1, 0, 4]

  • 输出:false

  • 解释:无论如何你都无法越过索引 3 处的 0,因此无法到达最后一个位置。

2. 跳跃游戏 I 的解题思路

该问题可以通过贪心算法动态规划来求解。我们尝试寻找每一步可以跳到的最远距离,以确定是否能够到达数组末尾。

贪心算法思路:
  1. 定义一个变量 farthest,表示能够跳到的最远位置。
  2. 遍历数组中的每个元素,逐步更新 farthest,即每次都更新当前位置能够跳到的最远位置。
  3. 如果在遍历过程中,发现当前位置已经超过 farthest,则无法到达末尾,返回 false
  4. 如果遍历到数组末尾或更远,说明可以到达末尾,返回 true

3. 贪心算法的实现

下面是跳跃游戏 I 的贪心算法 Java 实现:

public class JumpGame {
    
    public boolean canJump(int[] nums) {
        int farthest = 0;  // 表示能够跳到的最远距离

        // 遍历数组
        for (int i = 0; i < nums.length; i++) {
            // 如果当前位置已经超过了之前能够跳到的最远距离,则返回 false
            if (i > farthest) {
                return false;
            }
            // 更新能够跳到的最远距离
            farthest = Math.max(farthest, i + nums[i]);
        }

        return true;  // 能够到达最后一个位置
    }

    public static void main(String[] args) {
        JumpGame game = new JumpGame();
        int[] nums = {2, 3, 1, 1, 4};
        System.out.println("Can jump to the end: " + game.canJump(nums));  // 输出 true

        int[] nums2 = {3, 2, 1, 0, 4};
        System.out.println("Can jump to the end: " + game.canJump(nums2));  // 输出 false
    }
}

4. 代码详解

4.1 输入与输出
  • 输入:一个非负整数数组 nums[],每个元素表示在该位置最多可以跳跃的步数。
  • 输出:返回 truefalse,表示是否可以跳跃到达数组的最后一个位置。
4.2 关键步骤
  1. 初始化:定义一个变量 farthest,用于记录当前可以跳到的最远位置,初始值为 0。
  2. 遍历数组:从第一个元素开始逐步更新最远可到达的位置。
    • 每次遍历时,判断当前位置 i 是否可以被访问。如果当前位置已经超出 farthest,则说明无法到达该位置,返回 false
    • 每次更新 farthest 为当前位置 i 能够跳到的最远位置 i + nums[i]
  3. 判断结果:如果遍历完数组,farthest 大于或等于数组最后一个位置的索引,则返回 true
4.3 时间复杂度和空间复杂度
  • 时间复杂度O(n),我们只需要遍历一次数组。
  • 空间复杂度O(1),只使用了常量级的额外空间。

5. 跳跃游戏 II 问题描述

跳跃游戏 II 是跳跃游戏的升级版,要求找出到达数组末尾的最小跳跃次数。

示例:
  • 输入:nums = [2, 3, 1, 1, 4]
  • 输出:2
  • 解释:我们可以先跳 1 步到达位置 1,然后再跳 3 步到达最后一个位置。

6. 跳跃游戏 II 的解题思路

为了在最少跳跃次数下到达数组末尾,我们需要跟踪每次跳跃的最远位置,同时确定何时进行下一次跳跃。

贪心算法思路:
  1. 定义变量 jumps 记录跳跃次数,end 记录当前跳跃的边界,farthest 记录能够跳到的最远位置。
  2. 遍历数组,如果当前索引超过了 end,则进行一次跳跃,跳跃的边界更新为 farthest,同时增加跳跃次数。
  3. 重复该过程直到遍历完整个数组。

7. 贪心算法的实现

下面是跳跃游戏 II 的贪心算法 Java 实现:

public class JumpGameII {

    public int jump(int[] nums) {
        int jumps = 0;      // 跳跃次数
        int farthest = 0;   // 能够跳到的最远距离
        int end = 0;        // 当前跳跃的边界

        for (int i = 0; i < nums.length - 1; i++) {
            // 更新能够跳到的最远距离
            farthest = Math.max(farthest, i + nums[i]);

            // 当到达当前跳跃边界时,进行跳跃
            if (i == end) {
                jumps++;
                end = farthest;  // 更新跳跃的边界

                // 如果当前边界已经到达或超过最后一个元素,结束循环
                if (end >= nums.length - 1) {
                    break;
                }
            }
        }

        return jumps;  // 返回跳跃次数
    }

    public static void main(String[] args) {
        JumpGameII game = new JumpGameII();
        int[] nums = {2, 3, 1, 1, 4};
        System.out.println("Minimum jumps: " + game.jump(nums));  // 输出 2
    }
}

8. 代码详解

8.1 输入与输出
  • 输入:一个非负整数数组 nums[],每个元素表示在该位置最多可以跳跃的步数。
  • 输出:返回到达数组末尾的最小跳跃次数。
8.2 关键步骤
  1. 初始化:定义变量 jumps 表示跳跃次数,farthest 表示可以跳到的最远位置,end 表示当前跳跃的边界。
  2. 遍历数组:每次更新最远可跳到的位置 farthest,如果当前索引达到边界 end,说明需要进行一次跳跃,跳跃次数 jumps 加 1,更新边界 endfarthest
  3. 判断结束:当边界达到或超过数组的最后一个位置时,结束循环并返回跳跃次数。
8.3 时间复杂度和空间复杂度
  • 时间复杂度O(n),因为我们只遍历一次数组。
  • 空间复杂度O(1),只使用了常量级的额外空间。

9. 举例说明

跳跃游戏 I:

对于数组 nums = [2, 3, 1, 1, 4],可以通过以下步骤跳跃到末尾:

  • 从位置 0 跳 1 步到位置 1。
  • 从位置 1 跳 3 步到达数组末尾。
跳跃游戏 II:

对于相同的数组 nums = [2, 3, 1, 1, 4],最小跳跃次数是 2:

  • 从位置 0 跳 1 步到达位置 1。
  • 从位置 1 跳 3 步到达末尾。

10. 总结

跳跃游戏是一个关于数组跳跃的经典问题,有多种变体。跳跃游戏 I 主要判断是否能够到达末尾,而跳跃游戏 II 则要求计算最少跳跃次数。两者都可以通过贪心算法来高效求解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值