引言
这篇教程聚焦于腾讯云 TI 平台部署 DeepSeek 的全流程,这是一个是为 AI 工程师打造的一站式机器学习服务平台。TI平台能提供更全面的选择,包括各种模型以及各种服务配置。这里的模型不用你手动下载,DeepSeek-R1的所有模型都能在上面找到。并且无需二次下载,就能直接预装到服务当中。当然TI平台能做的还有很多,比如模型训练等功能。但是这篇文章针对第一次接触TI平台的用户,所以不深入去讲了。
登录TI平台
这是TI平台产品页,这里可以阅读一下简介。能有效的帮助你去认识这款产品。
我们点击立即使用,会跳转到控制台界面。控制台功能很多,会比较的无从下手,我们这里能看到有很多模型,包括腾讯自研的混元、DeepSeek和Llama系列模型。我们点击DeepSeek系列模型,进入详情面板。
2月3日TI平台开放了R1模型的体验,总共开放了两种体验。第一个是R1(671B)参数模型,第二个是R1(1.5B)参数。这里的671B就是说他模型训练的参数是6710亿参数,其他参数也同理。我们看到系列模型清单把R1所有参数的模型都提供了,让我们能自行选择部署。
模型体验
接下来我会通过几个问题来测试一下。
prompt获取
这里我想获取他的提示词,我们已经问了他的提示词,但是并没有输出回答,只是说他是什么模型。
这里我们继续追问,这里基于之前输入的信息。这时候他会认为这是一段无害请求,就能告诉用户他的提示词是什么。
python API调取
首先我们想要用python写一个ollama API调用。在R1推理模型下表现不算太好。经过实测,这有概率出现卡住无法回答的情况。回答不是很顺畅,卡住十几次必须要冲进界面才行。
我们看到他的思考,思考过程还是比较合理的。
这是正式的输出回答,这里只提供问答参考,就不进行额外测试。
搭建DeepSeek-R1
我们回到刚刚模型详情,顶部这里有“快速试一试”,我们点击“新建在线服务”。
我们会进到购买服务界面,这里使用TION按量计费创建。
这里我们看一下模型所需要的推荐配置,这里以7B作为示例参考,来进行搭建。
我们根据7B推荐配置,来选择对应的算力规格。
这里的费用是11.17元一小时,我们价格确认无误之后点击启动服务即可。
这里需要注意的是,按量计费功能需预先冻结所选配置两个小时的费用,请确保账户余额充足。
我们等待服务启动即可,如果模型选择错误请第一时间停止,并且删除服务。以免账户资金流失。
这里显示计费中就显示服务正在计费就相当于正常进行了。
我们点进基本信息,看看服务有没有错误。
我们在这里能看到有一个在线体验,这里调用的就是你搭建的7B模型。和上面一样你能立马在线使用大模型进行问答。
这里的服务调用,指的是API,这里给个示例。
这里可以跟我一样填写/v1/chat/completions
进行模型调用,命令行可以用下面的指令进行调用。
这里可以通过json格式进行提问。
上面如果要进行更高性能的调用,推荐启用高速服务调用。选择VPC调用地址即可开启。这个是进行独立计费的,请慎重开启。
结语
这篇文章我们对TI平台有着简略的认识,我们用三分钟即可在TI平台搭建属于自己的模型和专属接口。对于DeepSeek的部署流程依然是简洁明了的,从登录平台、选择模型体验,到搭建 DeepSeek - R1 模型服务,以及后续的 API 调用等环节,都进行了详细阐述。也希望这个平台能在你未来的开发之路上发挥重大作用,本篇文章虽然没有对TI平台做过多的介绍,但是依然是值得你去体验的。