类型、创建方法,还是性能优化?
表结构---设计表---SQL预览
表结构---设计表---SQL预览---索引
索引是数据库中提高查询性能的重要工具。主要类型包括:
- B-Tree索引:常用的默认索引,适用于范围查询。
- Hash索引:适用于等值查询,速度快,但不支持范围查询。
- Full-Text索引:用于文本搜索,支持复杂的文本匹配。
创建索引可以通过 CREATE INDEX
语句,例如:
CREATE INDEX idx_name ON table_name(column_name);
- 索引底层数据结构存在很多种类型,常见的索引结构有: B 树, B+树 和 Hash、红黑树。
- 索引是一种用于快速查询和检索数据的数据结构,其本质可以看成是一种排序好的数据结构。
- MYSQL有慢查询日志
1.开启慢查询--explain select ....【explain关键字】
2.看慢是否走索引
索引的优缺点
优点:
- 使用索引可以大大加快数据的检索速度(大大减少检索的数据量), 减少 IO 次数,这也是创建索引的最主要的原因。【磁盘读取数据库的IO】
- 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
缺点:
- 创建索引和维护索引需要耗费许多时间【旋转(修改)根节点改变】。当对表中的数据进行增删改的时候,如果数据有索引,那么索引也需要动态的修改,会降低 SQL 执行效率。
- 索引需要使用物理文件存储,也会耗费一定空间。
- Hash 索引不支持顺序和范围查询。
-
二叉查找树(Binary Search Tree)是一种基于二叉树的数据结构,它具有以下特点:
- 左子树所有节点的值均小于根节点的值。
- 右子树所有节点的值均大于根节点的值。
- 左右子树也分别为二叉查找树。
旋转:发生在增加、删除数据
AVL--绝对的平衡,每增加一个旋转一次
红黑树--不追求严格的平衡,而是大致的平衡。
红黑树的平衡性相对较弱,可能会导致树的高度较高,这可能会导致一些数据需要进行多次磁盘 IO 操作才能查询到,这也是 MySQL 没有选择红黑树的主要原因。也正因如此,红黑树的插入和删除操作效率大大提高了,因为红黑树在插入和删除节点时只需进行 O(1) 次数的旋转和变色操作,即可保持基本平衡状态,而不需要像 AVL 树一样进行 O(logn) 次数的旋转操作。
目前大部分数据库系统及文件系统都采用 B-Tree 或其变种 B+Tree 作为索引结构。
B 树& B+树两者有何异同呢?
【B+树支持范围和顺序查找】
- B 树的所有节点既存放键(key) 也存放数据(data)
- B+树只有叶子节点存放 key 和 data,其他内节点只存放 key。
- B 树的叶子节点都是独立的;B+树的叶子节点有一条引用链指向与它相邻的叶子节点。
- B 树的检索的过程相当于对范围内的每个节点的关键字做二分查找,可能还没有到达叶子节点,检索就结束了。而 B+树的检索效率就很稳定了,任何查找都是从根节点到叶子节点的过程,叶子节点的顺序检索很明显。
- 在 B 树中进行范围查询时,首先找到要查找的下限,然后对 B 树进行中序遍历,直到找到查找的上限;而 B+树的范围查询,只需要对链表进行遍历即可。
综上,B+树与 B 树相比,具备更少的 IO 次数、更稳定的查询效率和更适于范围查询这些优势。
-
执行计划分析
key 列表示 MySQL 实际使用到的索引。如果为 NULL,则表示未用到索引。
查询执行的类型,描述了查询是如何执行的。所有值的顺序从最优到最差排序为:
system > const > eq_ref > ref > fulltext > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL
常见的几种类型具体含义如下:
- system:如果表使用的引擎对于表行数统计是精确的(如:MyISAM),且表中只有一行记录的情况下,访问方法是 system ,是 const 的一种特例。
- const:表中最多只有一行匹配的记录,一次查询就可以找到,常用于使用主键或唯一索引的所有字段作为查询条件。
- eq_ref:当连表查询时,前一张表的行在当前这张表中只有一行与之对应。是除了 system 与 const 之外最好的 join 方式,常用于使用主键或唯一索引的所有字段作为连表条件。
- ref:使用普通索引作为查询条件,查询结果可能找到多个符合条件的行。
- index_merge:当查询条件使用了多个索引时,表示开启了 Index Merge 优化,此时执行计划中的 key 列列出了使用到的索引。
- range:对索引列进行范围查询,执行计划中的 key 列表示哪个索引被使用了。
- index:查询遍历了整棵索引树,与 ALL 类似,只不过扫描的是索引,而索引一般在内存中,速度更快。
- ALL:全表扫描。
- Using filesort:在排序时使用了外部的索引排序,没有用到表内索引进行排序。
- Using temporary:MySQL 需要创建临时表来存储查询的结果,常见于 ORDER BY 和 GROUP BY。
- Using index:表明查询使用了覆盖索引,不用回表,查询效率非常高。
- Using index condition:表示查询优化器选择使用了索引条件下推这个特性。
- Using where:表明查询使用了 WHERE 子句进行条件过滤。一般在没有使用到索引的时候会出现。
- Using join buffer (Block Nested Loop):连表查询的方式,表示当被驱动表的没有使用索引的时候,MySQL 会先将驱动表读出来放到 join buffer 中,再遍历被驱动表与驱动表进行查询。
这里提醒下,当 Extra 列包含 Using filesort 或 Using temporary 时,MySQL 的性能可能会存在问题,需要尽可能避免。
-
MySQL三大日志(binlog、redo log和undo log)
-
redo log(重做日志)
是 InnoDB 存储引擎独有的,它让 MySQL 拥有了崩溃恢复能力。保持数据完整性和持久性。