自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

莲君

心如

原创 矩阵乘法

矩阵A.B=C,则CijC_{ij}Cij​等于A中的i行乘以B中的j列. 参考课程 [a11a12a13a14a21a22a23a24a31a32a33a34](A) \left[ \begin{matrix} a11 & a12& a13&a14\\ a...

2019-10-19 07:48:11

阅读数 16

评论数 0

转载 (Q-Q图)分位数图详解

一 定义: 设原序列为X=x1,x2,x3,......xNX = {x_1,x_2,x_3,......x_N}X=x1​,x2​,x3​,......xN​, 分位数Qi=xi−mean(x)δQ_i = \frac{x_i - mean(x)}{\delta}Qi​=δxi​−mean(x)...

2019-10-12 21:58:57

阅读数 98

评论数 0

转载 python中import其他文件夹下的模块

如果要import不在同一个路径下的module,则需要先把这个module的路径添加进来。 例如:

2019-09-19 15:32:01

阅读数 625

评论数 0

原创 选股方法

注意:本文是课堂笔记,完全是为方便个人复盘记录的,没有方便大众的意图,不喜勿喷。 1,2如图 3.遗传算法 (计算时所选数据不要超过3年) 4.根据marchenko-pastur分布来干掉随机干扰项(第九课,1:41:31) ...

2019-09-16 09:15:34

阅读数 144

评论数 0

原创 量化交易第9课笔记

线性函数:A⃗x⃗=λx⃗\vec{A} \vec{x} = \lambda \vec{x}Ax=λx 的含义是经过A⃗\vec{A}A变化后得到的值仍然与向量X⃗\vec{X}X共线性 并不是所有的X⃗\vec{X}X都满足这个等式。 如果X⃗=X⃗T\vec{X} = \vec{X}^TX=X...

2019-09-15 21:57:11

阅读数 35

评论数 0

转载 install quantopian时出现No module named pip.req的解决办法

参考:https://stackoverflow.com/questions/25192794/no-module-named-pip-req 其中适用于我的解决办法:把setup.py中的

2019-09-06 16:04:12

阅读数 213

评论数 0

转载 python中去掉列表降维:ravel,flatten,reshape

1.ravel: 2.flatten: 3.reshape:

2019-09-02 22:05:31

阅读数 425

评论数 0

转载 ADF检验

一 在python中的实现: import statsmodels.tsa.stattools as stm stm.adfuller(data,x, maxlag=None, regression=‘c’, autolag=‘AIC’, store=False, regresults=False...

2019-08-30 18:47:47

阅读数 1075

评论数 0

原创 WOE,IV ,PSI,单变量PSI,KS值,capture rate

1.WOE Weight of Evidence,证据权重。 要对一个变量进行WOE编码,需要首先把这个变量进行分组处理(离散化,分箱等)。分组后,对于第i组,这个组中响应客户站样本中所有响应客户的比例为pyip_{yi}pyi​ pyi=yiyTp_{yi}=\frac{y_i}{y_T}pyi...

2019-08-04 17:42:23

阅读数 282

评论数 0

原创 FM(factorization Machines)

《Factorization Machines》paper的阅读笔记,仅为了整理个人思路。 个人觉得FM的本质就是预测值=偏置+权重1单变量+权重2变量之间的相互作用。 偏置和权重都可以是标量,也可以是向量 下面是本人认为重要的文章内容摘抄与翻译,能力有限,水平不足,不喜请绕道。 一 FM的优点 ...

2019-08-02 15:51:50

阅读数 19

评论数 0

转载 估算张量(Tensor.eval)与执行操作(Operation.run)

import tensorflow as tf #创建数据流图:y = Wx + b,其中,W和B为存储节点,x为数据节点 x = tf.placeholder(tf.float32) W = tf.Variable(1.0) b = tf.Variable(1.0) y = Wx + b wit...

2019-07-24 22:07:02

阅读数 11

评论数 0

转载 Momentum, RMSProp, Adam,自适应学习率

https://blog.csdn.net/willduan1/article/details/78070086 上面这篇文章讲得很好

2019-07-12 10:32:53

阅读数 53

评论数 0

转载 keras中的类ModelCheckpoint讲的比较通俗的文章

https://machinelearningmastery.com/check-point-deep-learning-models-keras/

2019-07-11 19:15:30

阅读数 125

评论数 0

原创 seven老师直播课笔记(7月9号,流水账式,没整理)

raw 数据——>能被学习的数据的过程:特征工程 分类:离散的输出空间 回归:连续的输出空间 线性分类器: D维的空间映射到K维的空间的空间,W=W*D维 向量的点积:其物理意义是计算两个变量之间的相关度和相似性 softmax:输出的是概率空间 yiy_iyi​是一个独热编码列向量,yi^...

2019-07-10 17:32:03

阅读数 15

评论数 0

原创 7月5号线下课:集成学习(杨老师,流水账式,没整理)

同质集成:基学习器 异质集成:组建学习器 Boosting:串行学习,bias比较小 Bagging:并行学习,variance比较小 stacking:投票方法是学出来的,学:其实就是迭代,纠错,递归, 集成学习 一 wide(逻辑回归)&deep learning(深度学习)(Goog...

2019-07-10 17:31:00

阅读数 54

评论数 0

转载 自然语言处理与建模

文本预处理流水线

2019-07-05 11:43:30

阅读数 106

评论数 0

转载 model优化方法及偏差与方差

目标:argminxf(x)arg min_{x} f(x)argminx​f(x),其中,g(x)=∇f(x),H(x)=∇∇f(x)g(x)=\nabla f(x), H(x)=\nabla \nabla f(x)g(x)=∇f(x),H(x)=∇∇f(x) 1.梯度下降(Gradient D...

2019-07-04 10:27:37

阅读数 19

评论数 0

转载 特征工程中的常用操作

1.数值型数据 幅度缩放(最大最小值缩放,归一化…) 离散化/分箱分桶(等距:pd.cut,等频:pd.qcut)(特征交叉) 统计值(Max,min,quentile) 四则运算(加减乘除) 幅度变化(有一些模型对输入数据有分布建设,LR建设输入连续值特征符合正太分布) 监督学习分箱(用决策树...

2019-07-03 23:58:54

阅读数 84

评论数 0

转载 循环神经网络与应用

循环神经网络 RNN :循环神经网络,处理的是后续的输出与之前的内容有关联的任务。 RNN引入“记忆”的概念 “循环”2字来源于其每个源于都执行相同的任务,但是输出依赖于输入和“记忆”。NMT: neural machine translation 一.场景与多种应用:模仿生...

2019-07-03 15:23:49

阅读数 148

评论数 0

转载 卷积神经网络

一 卷积神经网络层级结构 保持了层级网络结构 不同层次有不同形式(运算)与功能 主要是以下层次: 数据输入层/input layer 三种常见的数据处理方式 去均值:把输入数据各个维度都中心化到0 归一化:幅度归一化到同样的范围 PCA/白化:用PCA降维,白化是对数据每个特征轴上的幅度归一化 ...

2019-07-02 10:10:18

阅读数 11

评论数 0

转载 机器学习工具包链接

1.sklearn: https://scikit-learn.org/stable/modules/classes.html#module-sklearn.discriminant_analysis 2.lightgbm https://lightgbm.readthedocs.io/en/la...

2019-07-02 08:11:19

阅读数 140

评论数 0

转载 很赞的讲神经网络BP的文章

有多赞呢,我觉得看完后几乎不需要看书了~ https://www.zybuluo.com/hanbingtao/note/433855

2019-06-28 21:16:19

阅读数 97

评论数 0

翻译 神经网络之传递函数(sigmoid ,双S)

1.S函数(sigmoid)f(x)=11+e−xf(x)=\frac{1}{1+e^{-x}}f(x)=1+e−x1​ 2.双S函数 f(x)=1−e−x1+e−xf(x)=\frac{1-e^{-x}}{1+e^{-x}}f(x)=1+e−x1−e−x​

2019-06-27 16:26:01

阅读数 462

评论数 0

转载 交叉熵损失函数(softmax分类器)

对于训练集中第iii张图片数据xix_ixi​,在WWW下会有一个得分结果向量fyif_{y_i}fyi​​,则损失函数几座Li=−log(efyi∑jefj)L_i=-log(\frac{e^{f_{y_i}}}{\sum_j e^{f_j}})Li​=−log(∑j​efj​efyi​​​) ...

2019-06-27 13:50:32

阅读数 567

评论数 0

转载 hinge loss(损失函数)详解

hinge loss:支持向量机损失函数 1.对于训练集中的第iii张图片数据xix_ixi​,在WWW下会有一个得分结果向量f(xi,W)f(x_i,W)f(xi​,W); 2.第jjj类的得分我们记作f(xi,W)jf(x_i,W)_jf(xi​,W)j​; 3.则在该样本上的损失,我们由下列...

2019-06-27 12:33:35

阅读数 1160

评论数 0

原创 Markdown(Latex)中的数学公式

本图由七月在线的学习资料转化而来 b

2019-06-27 11:45:13

阅读数 105

评论数 0

转载 控制树模型过拟合的方式

1.增加样本量 2.控制模型复杂度,比如限制最大树深,限制最小叶子结点样本量,结点进行分裂的样本最小值 3.学习率 4.阈值限定,比如信息增益小于某个值,停止增长 5.交叉验证,如果验证集熵目标函数下降变缓慢或开始上升,则停止 6.剪纸 PS:来自七月在线作业题 ...

2019-06-25 12:47:54

阅读数 92

评论数 0

原创 6月24 七月在线直播课笔记(流水账式,非技术,没归类)

仅对老师课堂上说的注意点之类的做了记录: 1.一定要看case,以便了解模型预估咋哪里出现了什么问题导致AUC降低 2.所有的问题尽可能转化为分类问题,少去做回归 例如:大于0.5,标为1,反之,标为0. 连续数值的label转为离散类别来做。 3.无监督学习 K-means:文本聚类 plsa ...

2019-06-24 22:53:08

阅读数 31

评论数 0

原创 分裂前后增益计算方法

ID3->信息增益 C4.5->信息增益比 CART->采用Gini系数 XG Boost->L~∗=−12∑j=1TGj2Hj+λ+γT\tilde{L}^*=-\frac{1}{2}\sum_{j=1}^{T}\frac{G_{j}^2}{H_j+\lambda}+\g...

2019-06-23 17:18:31

阅读数 135

评论数 0

转载 机器学习原理概图

本图来自7月在线,仅方便个人学习上传的

2019-06-23 17:09:42

阅读数 72

评论数 0

原创 梯度提升树(Gradient Boosting Tree)算法原理

一 计算过程: 输入: *(xi,yi),T,L(x_i,y_i),T,L(xi​,yi​),T,L 1.初始化f0f_0f0​ 2.for t=1 to T do 2.1. 计算响应:yi^=−[∂L(yi,F(xi))∂F(xi)]F(x)=Ft−1(x)\hat{y_i}=-[\frac{\...

2019-06-22 12:29:55

阅读数 333

评论数 0

原创 最大似然函数,琴生不等式

1.最大似然函数定义 Y={y1,y2,…yn} p(y1,y2,…yn)=p(y1)p(y2)…p(yn) 即y1,y2,…yn为独立同分布 似然函数: likelihood=∏j=1Np(yi)\prod_{j=1}^{N}p(y_i)∏j=1N​p(yi​) Lδ=∏j=1Npδ(yi)L_...

2019-06-19 10:35:16

阅读数 209

评论数 0

转载 隐马尔可夫模型

https://blog.csdn.net/zhuqiang9607/article/details/83934961

2019-06-18 11:12:03

阅读数 23

评论数 0

转载 如何通俗理解EM算法

https://blog.csdn.net/v_JULY_v/article/details/81708386?tdsourcetag=s_pcqq_aiomsg

2019-06-16 18:13:52

阅读数 33

评论数 0

转载 学习曲线

https://blog.csdn.net/qq_36523839/article/details/82556932

2019-06-16 12:14:29

阅读数 493

评论数 0

原创 特征空间和属性空间

语境:机器学习中 属性空间:所有属性的张成空间 特征空间:所选择的排除线性相关和对模型构建没有益处后的属性构成的属性空间就叫特征空间。 属性空间>=特征空间 ...

2019-06-13 16:20:14

阅读数 845

评论数 0

转载 markdown中数学公式整理

见这篇文章,写得蛮详细的 https://blog.csdn.net/zdk930519/article/details/54137476

2019-06-12 18:20:04

阅读数 126

评论数 0

原创 信息量,熵,联合熵,互信息,条件熵,相对熵(KL散度),交叉熵(cross entropy)

1.信息量 含义:对信息的度量。概率越小,信息量越大。 公式:h(xi)=−log2p(xi)h(x_i)=-log_2p(x_i)h(xi​)=−log2​p(xi​) 或者h(xi)=log21p(xi)h(x_i)=log_2\frac{1}{p(x_i)}h(xi​)=log2​p(xi​...

2019-06-12 18:07:17

阅读数 170

评论数 0

转载 Bagging

来自七月在线课程截图,仅方便个人复习时查找

2019-06-11 15:17:39

阅读数 24

评论数 0

转载 回归树RSS(递归二分)

来自七月在线课程截图,仅方便个人学习查找

2019-06-11 14:57:49

阅读数 54

评论数 0

提示
确定要删除当前文章?
取消 删除