Marina-ju
码龄6年
关注
提问 私信
  • 博客:745,847
    745,847
    总访问量
  • 113
    原创
  • 2,256,489
    排名
  • 58
    粉丝
  • 0
    铁粉

个人简介:虽恼太迟,又庆幸终于找到了喜欢的事

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:重庆市
  • 加入CSDN时间: 2018-08-24
博客简介:

莲君

博客描述:
仅做个人学习之用
查看详细资料
个人成就
  • 获得193次点赞
  • 内容获得52次评论
  • 获得636次收藏
创作历程
  • 8篇
    2020年
  • 172篇
    2019年
  • 21篇
    2018年
成就勋章
TA的专栏
  • 基本概念
    1篇
  • 数学-凸优化
    2篇
  • 凸优化
    1篇
  • 凸优化:
    1篇
  • 基本概念:仿射集
    1篇
  • 线性代数
    1篇
  • import
    1篇
  • 量化交易
    2篇
  • 列表
    1篇
  • 学习笔记
    98篇
  • mysql
    8篇
  • pandas
    26篇
  • ix
    1篇
  • tushare
    5篇
  • data
    2篇
  • python
    48篇
  • sklearn
    10篇
  • matplotlib
    19篇
  • plt.legend
    1篇
  • plt.annotate
    1篇
  • scatter
    2篇
  • plt.bar
    2篇
  • imshow
  • plt.imshow
    1篇
  • plot_surface
    1篇
  • subplot2grid
    1篇
  • plt
    1篇
  • plt.subplots
    1篇
  • twinx
    1篇
  • tick
    1篇
  • animation
    1篇
  • LLE
    1篇
  • numpy
    2篇
  • dataframe
    4篇
  • concat
    1篇
  • 正则表达式
    6篇
  • re
    6篇
  • reset_index
    1篇
  • set_index
    1篇
  • merge
    1篇
  • stock
    1篇
  • ADF检验
    1篇
  • hurst指数
    1篇
  • 机器学习
    2篇
  • 复数
    2篇
  • 复数的模
    1篇
  • datetime
    1篇
  • confusion_matrix
    1篇
  • 统计学
    3篇
  • 概率论
    2篇
  • BeautifulSoup
  • git
  • chromedriver
  • selenium
  • driver
  • 微积分
    1篇
  • pandas数据透视表
    1篇
  •  mysql
  • mac
    2篇
  • 二叉树
  • 堆
    1篇
  • heapq
    1篇
  • 爬虫
  • 递归
  • 8皇后问题
  • @classmethod
    3篇
  • @staticmethod
    1篇
  • 描述符
    1篇
  • class
    1篇
  • PIL
    1篇
  • 随机验证码
    1篇
  • 数币分析
    1篇
  • ML9
  • ROC
  • 贝叶斯
  • 熵
    1篇
  • notebook
    1篇
  • plt.pi
    1篇
  • 画图链接
    1篇
  • 读取压缩文件
    1篇
  • zip
    1篇
  • txt
    1篇
  • 画图
  • hadoop
    1篇
  • ssh
    1篇
  • pyspark
  • 大数据
    1篇
  • 朴素贝叶斯
  • 多元高斯
  • 人工智能
    16篇
  • 损失函数
    2篇
  • 回归树
    1篇
  • RSS
    1篇
  • bagging
  • 信息量
  • 联合熵
    1篇
  • 互信息
    1篇
  • 条件熵
    1篇
  • 机器学习基础
    1篇
  • markdown
    2篇
  • ML8
  • 矩阵求导
  • 特征空间
    1篇
  • 属性空间
    1篇
  • 学习曲线
    1篇
  • EM算法
  • 最大熵
  • 隐马尔可夫
    1篇
  • 最大似然函数
  • XGboost
  • Gradient Boosting Tree
    1篇
  • 决策树分裂依据
  • 总结
    1篇
  • 直播笔记
    1篇
  • 决策树
    1篇
  • 数学公式
    1篇
  • 传递函数
    1篇
  • 神经网络
  • 工具包
    1篇
  • 卷积神经网络
    1篇
  • RNN
    1篇
  • 特征工程
    1篇
  • 模型优化
    1篇
  • 自然语言处理
  • keras
    1篇
  • 优化算法
  • tensorflow
    1篇
  • paper
    1篇
  • 金融风控
    1篇
  • 环境变量配置
  • pip
兴趣领域 设置
  • 人工智能
    数据分析
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

181人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

归纳推理与演绎推理

1.归纳推理(inductive reasoning):需要找规律或趋势,然后推广。就是用已有信息进行趋势外推。归纳推理在推广时,并不知道趋势是否会继续,只是假设它会继续。2.演绎推理(deductive reasoning):从既有的事实或数据出发,演绎得到其他正确的事实,演绎推理知道肯定正确...
原创
发布博客 2019.03.14 ·
2311 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

mysql中删除表中数据和表

delete from t_student;(删除表格t_student中的数据)drop table t_student;删除表格t_student当设置为repeatable read时,事务没结束,删除表格会无效
原创
发布博客 2019.01.11 ·
3221 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

make_classification

原博客:https://blog.csdn.net/dataningwei/article/details/53649330
转载
发布博客 2018.12.27 ·
3898 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

正则表达式

学习网站:https://deerchao.net/tutorials/regex/regex.htm1.re.match:从头开始匹配,所以无法和“com”匹配re.match(‘www’,‘www.baidu.com’).span()(0, 3)b=re.match(‘com’,‘www.baidu.com’)b2.re.search():遍历查找匹配r...
原创
发布博客 2019.04.09 ·
127 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

迭代期望和方差(iterated expectation,variance)

1.期望2.方差:可看成是Yconditional universal内X的方差和conditional universal间X的方差两部分组成(类似于样本内和样本间的方差,或者种内和种间的方差(参看统计学F分布))。相关课程链接:https://www.bilibili.com/video/av6182731/?p=44...
原创
发布博客 2019.03.25 ·
8859 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

ridge&lasso

lasso:选出几组重要的featuresridge:可以基本上认为是求出最大似然值中庸之道:在自然科学领域也存在
原创
发布博客 2019.01.29 ·
442 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

matplotlib:次坐标轴ax2=ax1.twinx()

import numpy as npimport matplotlibmatplotlib.use(“TkAgg”)import matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dimport matplotlib.gridspec as gridspecx=np.arange(0,10,0.1)y1=0.0...
原创
发布博客 2019.01.17 ·
11048 阅读 ·
2 点赞 ·
1 评论 ·
16 收藏

make_multilabel_classification的教学举例

“”"Plot randomly generated multilabel datasetThis illustrates the datasets.make_multilabel_classification datasetgenerator. Each sample consists of counts of two features (up to 50 intotal), which...
原创
发布博客 2018.12.28 ·
1293 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

(Q-Q图)分位数图详解

一 定义:设原序列为X=x1,x2,x3,......xNX = {x_1,x_2,x_3,......x_N}X=x1​,x2​,x3​,......xN​,分位数Qi=xi−mean(x)δQ_i = \frac{x_i - mean(x)}{\delta}Qi​=δxi​−mean(x)​,其本质是某个值偏离均值的单位。二 做法:三 解图如果是在同一条线上,则样本分布和理论...
转载
发布博客 2019.10.12 ·
7981 阅读 ·
0 点赞 ·
0 评论 ·
5 收藏

make_regression

https://www.cnblogs.com/pinard/p/6047802.html
转载
发布博客 2019.01.07 ·
4725 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

python中import其他文件夹下的模块

如果要import不在同一个路径下的module,则需要先把这个module的路径添加进来。例如:
转载
发布博客 2019.09.19 ·
6241 阅读 ·
2 点赞 ·
1 评论 ·
5 收藏

ADF检验

一 在python中的实现:import statsmodels.tsa.stattools as stmstm.adfuller(data,x, maxlag=None, regression=‘c’, autolag=‘AIC’, store=False, regresults=False)二 背景知识补充:1.平稳性: 假定某个时间序列是由一系列随机过程生成的,即假定时间序列xt(t...
转载
发布博客 2019.08.30 ·
25348 阅读 ·
10 点赞 ·
0 评论 ·
44 收藏

学习曲线

https://blog.csdn.net/qq_36523839/article/details/82556932
转载
发布博客 2019.06.16 ·
1104 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python中@statimethod和@clasmetod的简单理解

1.@statimethod:加上这一句话,不需要实例化即可调用类方法。举例如下:但我发现,只要定义方法时加了self,再用静态方法会一直报错。实例化和非实例化都会报错。2.@classmethod:可以用来预处理传入类的变量。作用是用@classmethod语句后的方法处理了传入值后再将调用类方法。参考文章:1.https://blog.csdn.net/dyh4201/arti...
转载
发布博客 2019.05.10 ·
342 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

matplotlib:图中图

原视频链接:https://www.bilibili.com/video/av16378354/?p=17import numpy as npimport matplotlibmatplotlib.use(“TkAgg”)import matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dimport matplo...
原创
发布博客 2019.01.17 ·
1290 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

sklearn数据分析概览

一 分析算法的选择二 流程train_x,train_y,test_x,test_y = getData()model = somemodel()model.fit(train_x,train_y)predictions = model.predict(test_x)score = score_function(test_y,predictions)...
原创
发布博客 2020.04.27 ·
602 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

高维多数据聚类(sklearn.cluster.affinityPropagation)和降维(manifold.LocallyLinearEmbedding)

一 、聚类cluster.affinityPropagation适合高维、多数据快速聚类不需要指定最终聚类族的个数对数据的初始值不敏感对初始相似度矩阵数据的对称性没有要求和k-centers聚类方法相比,其结果的平方差误差较小原理:在开始时,将所有节点都看成是聚类中心,通过在样本对之间发消息知道收敛来创建聚类。然后使用少量实例样本作为聚类中心来描述数据集,聚类中心时数据集种最能代...
转载
发布博客 2020.04.25 ·
3265 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

稀疏逆协方差矩阵估计(GraphicalLassonCV)

1.本方法适用于相关性不大的特征(对象)的相关行分析,同时,样本数量要比特征数量少。2.如果相关性比较大的话则适合用shrinkage covariance(缩放相关性分析)以下为sklearn官方解释:协方差矩阵的逆矩阵(精度矩阵)与偏相关矩阵正比例,即它能给出数据之间的部分关系。也就是说,如果在一定条件下,两个特征彼此独立,则它们的协方差矩阵的对应系数将为零。所以,通过从数据中学习...
原创
发布博客 2020.04.24 ·
5046 阅读 ·
3 点赞 ·
0 评论 ·
9 收藏

期权定价公式的推导(欧式)

1.C=e−rTEQ[max(ST−K,0)]C = e^{-rT}E^{Q}[max(S_T-K,0)]C=e−rTEQ[max(ST​−K,0)]又可以写为C=e−rTEQ[(ST−K)]IIST>=K](1)C = e^{-rT}E^{Q}[(S_T-K)]II_{S_T > =K }] \tag 1 C=e−rTEQ[(ST​−K)]IIST​>=K​](1)其中QQ...
原创
发布博客 2020.04.15 ·
7729 阅读 ·
1 点赞 ·
0 评论 ·
13 收藏

量化面试题及答案

3月份亏钱了,还有房贷,可是想来想去还是想做股票。也许这就叫做狗改不了吃屎。空仓,每天做一些题,加深理解,在此做个记录。对冲和复制问2.32:看跌期权可以用来做什么?答:对冲,投机,套利4月15日:要把握的是确定性(趋势),而不是被波动性牵着鼻子走The Greeks(期权价格的敏感度)问2.43:在给定计算价格的方法时,计算Greeks的方法都有哪些,各有那些优缺点?...
原创
发布博客 2020.04.15 ·
7360 阅读 ·
1 点赞 ·
0 评论 ·
23 收藏
加载更多