LRUCache


一、什么是LRU Cache

LRU是Least Recently Used的缩写,意思是最近最少使用,它是一种Cache替换算法。 什么是Cache?狭义的Cache指的是位于CPU和主存间的快速RAM, 通常它不像系统主存那样使用DRAM技术,而使用昂贵但较快速的SRAM技术。 广义上的Cache指的是位于速度相差较大的两种硬件之间, 用于协调两者数据传输速度差异的结构。除了CPU与主存之间有Cache, 内存与硬盘之间也有Cache,乃至在硬盘与网络之间也有某种意义上的Cache── 称为Internet临时文件夹或网络内容缓存等。

Cache的容量有限,因此当Cache的容量用完后,而又有新的内容需要添加进来时, 就需要挑选并舍弃原有的部分内容,从而腾出空间来放新内容。LRU Cache 的替换原则就是将最近最少使用的内容替换掉。其实,LRU译成最久未使用会更形象, 因为该算法每次替换掉的就是一段时间内最久没有使用过的内容。

二、LRU Cache的实现

使用双向链表和哈希表的搭配是最高效和经典的。使用双向链表是因为双向链表可以实现任意位置O(1)的插入和删除,使用哈希表是因为哈希表的增删查改也是O(1)。
在这里插入图片描述

三、用OJ题来演示一下

leetcode跳转链接

1、题目描述

在这里插入图片描述

2、题目思路

我们先创建两个数据结构,根据上面的LRU Cache实现我们创建一个unordered_map的hash表,再创建一个LRUList的双向链表,我们本次实现的是将长时间未用的数据放到链表尾部,容量满了就删除尾部结点即可,如果中间遇到更新的结点的时候在链表中部,取出链表中部后将其头插到链表头部即可。

但我们写代码的时候绝对遇到一个问题,就是这个hash表应该怎么定义?我们定义成unordered_map<int, int>?分析一下,假如说是要找中间结点的话,其hash的second对应的是不是需要去遍历这个链表去找?那么时间复杂度就是O(N)了,所以我们转换思路,hash的second是个迭代器,指向链表相对应的位置,这不是直接就能找到对应的位置了吗!

我们绝对会遇到的问题就是迭代器失效的问题,我们第一种方法可以用到erase_push_front两个函数接口,解决迭代器失效的问题,也可以用一个很冷门的接口splice,我们用文档一看:在这里插入图片描述
我们下面实现的是erase+push_front的接口,其实很简单,取出迭代器,删除当前迭代器位置,将取出来的迭代器头插,再映射hashmap的对应关系即可。

get接口其实就是取到缓冲区对应关键字的值即可,我们只需要用迭代器去寻找然后return即可。
put接口其实就是放入即可,容量不够的话我们就删除链表尾部结点然后再头插新的结点;容量够的话直接头插即可。

3、代码

class LRUCache 
{
public:
    LRUCache(int capacity)
        : _capacity(capacity)
    {}
    
    int get(int key)
    {
        auto it = _hashmap.find(key); // 找的是对应key-value的后面的迭代器
        if (it != _hashmap.end())
        {
            // 使用erase+push_front应对迭代器失效的问题
            auto ret = it->second; // 先拿出迭代器
            pair<int, int> kv = *ret; // 先将这个迭代器的值拿出来
            _LRHList.erase(ret); // 删除这个list结点
            _LRHList.push_front(kv); // 头插
            _hashmap[key] = _LRHList.begin(); // kv对应关系在hash表中映射
            return kv.second;
        }
        else
        {
            return -1; // 没找到
        }
    }
    
    void put(int key, int value) 
    {
        // 更新+新增
        auto it = _hashmap.find(key);
        if (it == _hashmap.end())
        {
            // 新增,满了就删除尾部数据
            if (_hashmap.size() >= _capacity)
            {
                pair<int, int> back = _LRHList.back(); // 先拿出尾部数据
                _hashmap.erase(back.first); // 删除hash对应的key
                _LRHList.pop_back(); // 弹出list尾部数据
            }
            // 插入
            _LRHList.push_front(make_pair(key, value));
            _hashmap[key] = _LRHList.begin();
        }
        else
        {
            // 更新key所对应的位置
            auto ret = it->second;
            ret->second = value;

            // 使用erase+push_front应对迭代器失效的问题
            auto r = it->second; // 先拿出迭代器
            pair<int, int> kv = *r; // 先将这个迭代器的值拿出来
            _LRHList.erase(r); // 删除这个list结点
            _LRHList.push_front(kv); // 头插
            _hashmap[key] = _LRHList.begin(); // kv对应关系
        }
    }
private:
    typedef list<pair<int, int>>::iterator ITRator; // list的迭代器
    // unordered_map的hash表要做到查找更新的时间复杂度为O(1)
    // second就是指针指向我们的LRUList的相对应的位置
    // 因为指向相对应的位置就是能直接找到这个位置,不需要遍历
    // 简而言之就是提前指向关系了
    std::unordered_map<int, ITRator> _hashmap;
    // 这个链表存的是key-value对应关系
    std::list<pair<int, int>> _LRHList;
    size_t _capacity;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jjrenhai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值