马伟明:任何事物,只要抓住了规律,就等于牵住了牛鼻子

   马伟明 : 获国家科技进步一等奖2项。全国十大“杰出专业技术人才”、十佳“全国优秀科技工作者”、“有突出贡献的中青年专家”,一等功荣立者。海军少将, 2017年7月28日获得“八一勋章

    马伟明的思维的确有过人之处。在一般人看来,抽象的事物是最枯燥、最乏味,但在他眼里,最丰富最多彩的莫过于抽象。他喜欢抽象的事物,更长于抽象的逻辑思维。从读大学到读博士,越是抽象的课程他学习得越好。张盖凡教授开设的一门名为《交流电机过渡过程》的研究生课程,光公式符号就有1000多个,开课以来没有哪个研究生学起来不喊头痛的。唯独马伟明如鱼得水,趣味横生。课程结业考试,他获得了该课开设以来最高分,并从此接替张盖凡教授成为该课程的主讲教师。


   “学习也好,科研也罢,都有其一定的内在规律。”马伟明阐释他的思维诀窍:“任何事物,只要抓住了规律,就等于牵住了牛鼻子。”马伟明经常做的一项工作就是“抽象”。他将这种方法称之为“把复杂的问题简单化和本质化”。他反复告诫自己的学生:“一个工程技术人员,如果没有把复杂问题简单化和本质化的能力,将永远一事无成。”


   马伟明的“抽象”堪称绝技。他能把所学的每一门专业课“抽象”得只剩一句话甚至几个字。比如高等数学,不管是微分、积分,还是多元函数、微分方程,马伟明将几大本教材“抽象”后,仅用两个字便将其概括:“极限”。“极限是最本质、最基础的原概念。”他解释说:“除了平面解析几何,高等数学涉及的绝大多数概念,都可以通过这个概念引伸出来和定义出来。”电学,不论强电还是弱电,马伟明“抽象”后得出结论:最易混淆的概念就是3个字:“正方向”。自动控制理论,不管是经典的、现代的,还是线性的、非线性的,马伟明则“抽象”为两个字:“反馈。电子学也是两个字:“电路”。如果哪一门课程学下来,他不能用一句话或几个字“抽象”出来,他就认定自己没有学好。

马伟明特独的抽象思维能力得益于他扎实的哲学功底。科研之余,他唯一的嗜好就是研读哲学著作,如果这也算嗜好的话。从古希腊哲学、古罗马哲学,到中世纪哲学,再到近代哲学、现代哲学,他通涉博览,乐此不疲。对现代西方哲学流派的代表性人物及其哲学思想,诸如叔本华、尼采、萨特等等,他更是有着系统的研究和独到的见解。

数据集介绍:多类别水果目标检测与实例分割数据集 一、基础信息 数据集名称:多类别水果目标检测与实例分割数据集 图片数量: - 训练集:11,110张图片 - 验证集:635张图片 - 测试集:316张图片 - 总计:12,061张农业场景图片 分类类别: 苹果、香蕉、哈密瓜、无花果、葡萄、葡萄柚、柠檬、芒果、橙子、桃子、梨、菠萝、石榴、草莓、西瓜 标注格式: - YOLO格式,包含边界框及多边形坐标标注,兼容目标检测与实例分割任务 - 数据格式:农业场景实拍图片,覆盖不同光照条件、果实成熟度及遮挡场景 二、适用场景 农业自动化分拣系统: 支持构建水果识别与定位模型,用于智能分拣设备视觉模块开发,提升水果分类效率。 农业机器人视觉模块: 适用于果园巡检机器人,实现多类别水果实时检测与空间定位。 水果产量预估系统: 通过实例分割标注可精确计算果实分布密度,为产量预测提供数据支持。 农产品质量检测: 支持检测果实表面缺陷、形态异常等特征,适用于自动化质量分级系统。 计算机视觉算法研究: 为多目标检测、小样本实例分割等前沿算法提供高质量农业领域验证数据。 教育实训案例: 可作为农业AI应用开发课程的实践数据集,覆盖数据标注、模型训练全流程。 三、数据集优势 多任务适配性: 同时包含目标检测(边界框)与实例分割(多边形)标注,支持两种计算机视觉任务联合训练。 高类别完备性: 覆盖15种全球主要经济水果,包含常见热带水果(如芒果、菠萝)与温带水果(如苹果、梨)。 真实场景多样性: 数据采集涵盖果园、仓储、运输等多场景,包含果实重叠、枝叶遮挡、不同成熟度等实际工况。 标注专业性强: 所有标注经过农业专家校验,确保果实边界的精确标注,特别针对易混淆品种(如柑橘类)提供区分标注。 算法兼容度高: YOLO格式可直接应用于主流深度学习框架(YOLOv5/v7/v8、MMDetection等),
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值