二元交叉熵损失详解

二元交叉熵损失(Binary Cross-Entropy Loss)是二分类任务中常用的损失函数,用于衡量模型预测概率分布与真实标签之间的差异。其核心原理和实现细节如下:

1.数学表达式

对于单个样本,真实标签为 y∈{0,1},模型预测为类别1的概率为 p,则二元交叉熵损失为:

对于包含 N 个样本的数据集,总损失为所有样本损失的平均:

2.梯度计算

假设模型输出 z(logits),通过sigmoid函数得到预测概率 p。损失对 z 的导数为&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值