二元交叉熵损失(Binary Cross-Entropy Loss)是二分类任务中常用的损失函数,用于衡量模型预测概率分布与真实标签之间的差异。其核心原理和实现细节如下:
1.数学表达式
对于单个样本,真实标签为 y∈{0,1},模型预测为类别1的概率为 p,则二元交叉熵损失为:
对于包含 N 个样本的数据集,总损失为所有样本损失的平均:
2.梯度计算
假设模型输出 z(logits),通过sigmoid函数得到预测概率 p。损失对 z 的导数为&#
二元交叉熵损失(Binary Cross-Entropy Loss)是二分类任务中常用的损失函数,用于衡量模型预测概率分布与真实标签之间的差异。其核心原理和实现细节如下:
对于单个样本,真实标签为 y∈{0,1},模型预测为类别1的概率为 p,则二元交叉熵损失为:
对于包含 N 个样本的数据集,总损失为所有样本损失的平均:
假设模型输出 z(logits),通过sigmoid函数得到预测概率 p。损失对 z 的导数为&#