思路:
(1)条件:给出加权图,权值为0,或者1;
(2)问题:判断是否存在一棵最小生成树,使得权值和为fib数;
(3)分析:
- 由于权值只能是0或1,所以可判断生成树权值和为min - max的连续值,所以,只要min到max之间有fib数,就是yes否则是no;
- 于是考虑kruskal算法,小到大求出min,大到小求出max,并判断之间有没有fib即可;
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>
#include<cmath>
#include<map>
using namespace std;
const int maxn=1e5+10;
int N, M;
int pre[maxn];
int find(int x){
return x==pre[x]?pre[x]:pre[x]=find(pre[x]);
}
bool Union(int x, int y){
int fx=find(x), fy=find(y);
if(fx==fy) return false;
pre[fx]=fy;
return true;
}
struct node{
int u, v, w;
}edge[maxn];
void init(){
for(int i=0; i<=N; i++){
pre[i]=i;
}
}
bool cmp1(node a, node b){
return a.w<b.w;
}
bool cmp2(node a, node b){
return a.w>b.w;
}
int Kruskal(){
init();
int ret=0, cnt=0;
for(int i=0; i<M; i++){
if(Union(edge[i].u, edge[i].v)){
ret+=edge[i].w;
cnt++;
}
if(cnt==N-1) break;
}
if(cnt<N-1) return 0;
return ret;
}
bool fib[maxn];
void get_fib(){
memset(fib, false, sizeof(fib));
fib[0]=false;
fib[1]=true;
fib[2]=true;
int cnt=3, f1=1, f2=2;
while(1){
int t=f1+f2;
f1=f2, f2=t;
if(t>=maxn) break;
fib[t]=true;
}
}
int main(){
int T, cas=0;
scanf("%d", &T);
get_fib();
while(T--){
scanf("%d%d", &N, &M);
for(int i=0; i<M; i++){
scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].w);
}
sort(edge, edge+M, cmp1);
int minn=Kruskal();
sort(edge, edge+M, cmp2);
int maxn=Kruskal();
int flag=0;
for(int i=minn; i<=maxn; i++){
if(fib[i]){
flag=1;
break;
}
}
printf("Case #%d: ", ++cas);
if(flag) printf("Yes\n");
else printf("No\n");
}
return 0;
}