思路:
(1)为了类比Nim游戏,对台阶分奇偶;
(2)对于偶数级台阶,若奇数级台阶全为0,则后手必胜(先手拿几个放到下一级就把那几个从下一级拿到下下一级);则考虑奇数级台阶。
(3)结论:若奇数级台阶石子异或值不为0,则必胜;反之为0必败。
(4)证明:若不为0,则可使得下一步总为0,对于下一步人员,若其动偶数级台阶,则跟着动防止造成影响,若其动奇数级台阶,则下下一步异或值必不为0;若为0,同理,无论怎么动,始终自己异或值为0,则必然面对在奇数级全为0的条件下先动偶数级台阶的必败结局,故必败。
代码:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n;
cin >> n;
int res = 0;
for(int i = 1;i <= n;i ++)
{
int x;
cin >> x;
if(i % 2 != 0) res ^= x;
}
if(res == 0) puts("No");
else puts("Yes");
return 0;
}